메뉴 건너뛰기




Volumn 20, Issue 1, 2013, Pages 32-40

Reducing errors of wind speed forecasts by an optimal combination of post-processing methods

Author keywords

Adaptive post processing; Artificial neural network; Kalman filter; Numerical weather prediction

Indexed keywords

KALMAN FILTERS; MEAN SQUARE ERROR; NEURAL NETWORKS; NUMERICAL METHODS; PROCESSING; SPEED; WIND;

EID: 84874680260     PISSN: 13504827     EISSN: 14698080     Source Type: Journal    
DOI: 10.1002/met.294     Document Type: Article
Times cited : (61)

References (27)
  • 1
    • 40949159664 scopus 로고    scopus 로고
    • The economic benefit of short-term forecasting for wind energy in the UK electricity market
    • Barthelmie R, Murray F, Pryor S. 2008. The economic benefit of short-term forecasting for wind energy in the UK electricity market. Energy Policy 36(5): 1687-1696.
    • (2008) Energy Policy , vol.36 , Issue.5 , pp. 1687-1696
    • Barthelmie, R.1    Murray, F.2    Pryor, S.3
  • 2
    • 0021479290 scopus 로고
    • Time series models to simulate and forecast wind speed and wind power
    • Brown BG, Katz RW, Murphy AH. 1984. Time series models to simulate and forecast wind speed and wind power. Journal of Applied Meteorology 23(8): 1184-1195.
    • (1984) Journal of Applied Meteorology , vol.23 , Issue.8 , pp. 1184-1195
    • Brown, B.G.1    Katz, R.W.2    Murphy, A.H.3
  • 3
    • 77954315872 scopus 로고    scopus 로고
    • Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model
    • Cadenas E, Rivera W. 2010. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model. Renewable Energy 35(12): 2732-2738.
    • (2010) Renewable Energy , vol.35 , Issue.12 , pp. 2732-2738
    • Cadenas, E.1    Rivera, W.2
  • 4
    • 38849209866 scopus 로고    scopus 로고
    • Strengths and weaknesses of MOS, running-mean bias removal, and Kalman filter techniques for improving model forecasts over the western United States
    • Cheng WYY, Steenburgh WJ. 2007. Strengths and weaknesses of MOS, running-mean bias removal, and Kalman filter techniques for improving model forecasts over the western United States. Weather and Forecasting 22(6): 1304-1318.
    • (2007) Weather and Forecasting , vol.22 , Issue.6 , pp. 1304-1318
    • Cheng, W.Y.Y.1    Steenburgh, W.J.2
  • 5
    • 84874734396 scopus 로고    scopus 로고
    • COSMO. Cosmo Public area. The Consortium for Small-scale Modeling (COSMO) (accessed 1 July 2011)
    • COSMO. 2010. Cosmo Public area. The Consortium for Small-scale Modeling (COSMO). http://www.cosmo-model.org (accessed 1 July 2011).
    • (2010)
  • 7
    • 3343023636 scopus 로고    scopus 로고
    • Adaptive Kalman filtering of 2-metre temperature and 10-metre wind-speed forecasts in Iceland
    • Crochet P. 2004. Adaptive Kalman filtering of 2-metre temperature and 10-metre wind-speed forecasts in Iceland. Meteorological Applications 11(2): 173-187.
    • (2004) Meteorological Applications , vol.11 , Issue.2 , pp. 173-187
    • Crochet, P.1
  • 8
    • 84874721691 scopus 로고    scopus 로고
    • EirGrid. EirGrid Plc. Annual renewable report 2010. (accessed 1 July 2011)
    • EirGrid. 2010. EirGrid Plc. Annual renewable report 2010. http://www.eirgrid.com/media/AnnualRenewableReport2010.pdf (accessed 1 July 2011).
    • (2010)
  • 9
    • 0041866831 scopus 로고    scopus 로고
    • A one-dimensional Kalman filter for the correction of near surface temperature forecasts
    • Galanis G, Anadranistakis M. 2002. A one-dimensional Kalman filter for the correction of near surface temperature forecasts. Meteorological Applications 9(4): 437-441.
    • (2002) Meteorological Applications , vol.9 , Issue.4 , pp. 437-441
    • Galanis, G.1    Anadranistakis, M.2
  • 10
    • 84874738779 scopus 로고    scopus 로고
    • The state-of-the-art in short-term prediction of wind power. Project ANEMOS. (accessed 11 November 2010)
    • Giebel G. 2003. The state-of-the-art in short-term prediction of wind power. Project ANEMOS. http://anemos.cma.fr/download/ANEMOS_D1.1_StateOfTheArt_v1.1.pdf (accessed 11 November 2010).
    • (2003)
    • Giebel, G.1
  • 11
    • 0001737050 scopus 로고
    • The use of Model Output Statistics (MOS) in objective weather forecasting
    • Glahn HR, Lowry DA. 1972. The use of Model Output Statistics (MOS) in objective weather forecasting. Journal of Applied Meteorology 11(8): 1203-1211.
    • (1972) Journal of Applied Meteorology , vol.11 , Issue.8 , pp. 1203-1211
    • Glahn, H.R.1    Lowry, D.A.2
  • 12
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman R. 1960. A new approach to linear filtering and prediction problems. ASME Journal of Basic Engineering 82: 35-45.
    • (1960) ASME Journal of Basic Engineering , vol.82 , pp. 35-45
    • Kalman, R.1
  • 14
    • 77953137822 scopus 로고    scopus 로고
    • On comparing three artificial neural networks for wind speed forecasting
    • Li G, Shi J. 2010. On comparing three artificial neural networks for wind speed forecasting. Applied Energy 87(7): 2313-2320.
    • (2010) Applied Energy , vol.87 , Issue.7 , pp. 2313-2320
    • Li, G.1    Shi, J.2
  • 17
    • 79951480123 scopus 로고    scopus 로고
    • R Development Core Team. R Foundation for Statistical Computing: Vienna. (accessed August 2011)
    • R Development Core Team. 2010. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna. http://www.R-project.org. (accessed August 2011).
    • (2010) R: A Language and Environment for Statistical Computing
  • 20
    • 58149474856 scopus 로고    scopus 로고
    • Accurate short-term wind speed prediction by exploiting diversity in input data using banks of artificial neural networks
    • Salcedo-Sanz S, Pérez-Bellido A, Ortiz-García E, Portilla-Figueras A, Prieto L, Correoso F. 2009b. Accurate short-term wind speed prediction by exploiting diversity in input data using banks of artificial neural networks. Neurocomputing 72(4-6): 1336-1341.
    • (2009) Neurocomputing , vol.72 , Issue.4-6 , pp. 1336-1341
    • Salcedo-Sanz, S.1    Pérez-Bellido, A.2    Ortiz-García, E.3    Portilla-Figueras, A.4    Prieto, L.5    Correoso, F.6
  • 21
    • 0034286972 scopus 로고    scopus 로고
    • A comparison of various forecasting techniques applied to mean hourly wind speed time series
    • Sfetsos A. 2000. A comparison of various forecasting techniques applied to mean hourly wind speed time series. Renewable Energy 21(1): 23-35.
    • (2000) Renewable Energy , vol.21 , Issue.1 , pp. 23-35
    • Sfetsos, A.1
  • 22
    • 27644470645 scopus 로고    scopus 로고
    • Bias-corrected short-range ensemble forecasts of near surface variables
    • Stensrud DJ, Yussouf N. 2005. Bias-corrected short-range ensemble forecasts of near surface variables. Meteorological Applications 12(3): 217.
    • (2005) Meteorological Applications , vol.12 , Issue.3 , pp. 217
    • Stensrud, D.J.1    Yussouf, N.2
  • 24
    • 79955065793 scopus 로고    scopus 로고
    • Adaptive post-processing of short-term wind forecasts for energy applications
    • DOI: 10.1002/we.420
    • Sweeney C, Lynch P. 2011. Adaptive post-processing of short-term wind forecasts for energy applications. Wind Energy 14(3): 317-325, DOI: 10.1002/we.420.
    • (2011) Wind Energy , vol.14 , Issue.3 , pp. 317-325
    • Sweeney, C.1    Lynch, P.2
  • 25
    • 20444437286 scopus 로고    scopus 로고
    • Forecast of hourly average wind speed with ARMA models in Navarre (Spain)
    • Torres JL, García A, De Blas M, De Francisco A. 2005. Forecast of hourly average wind speed with ARMA models in Navarre (Spain). Solar Energy 79(1): 65-77.
    • (2005) Solar Energy , vol.79 , Issue.1 , pp. 65-77
    • Torres, J.L.1    García, A.2    De Blas, M.3    De Francisco, A.4
  • 26
    • 34250163435 scopus 로고    scopus 로고
    • Towards a global meso-scale model: the high-resolution system T799L91 and T399L62 EPS
    • Untch A, Miller M, Hortal M, Buizza R, Janssen P. 2006. Towards a global meso-scale model: the high-resolution system T799L91 and T399L62 EPS. ECMWF Newsletter 108: 6-13.
    • (2006) ECMWF Newsletter , vol.108 , pp. 6-13
    • Untch, A.1    Miller, M.2    Hortal, M.3    Buizza, R.4    Janssen, P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.