메뉴 건너뛰기




Volumn 64, Issue 4, 2013, Pages 513-529

Using semi-supervised classifiers for credit scoring

Author keywords

banking; benchmarking; credit scoring; low default portfolio; one class classification; supervised classification

Indexed keywords

BENCHMARKING; OPERATIONS RESEARCH; RESEARCH;

EID: 84874596874     PISSN: 01605682     EISSN: 14769360     Source Type: Journal    
DOI: 10.1057/jors.2011.30     Document Type: Article
Times cited : (31)

References (80)
  • 2
    • 64749091335 scopus 로고    scopus 로고
    • 50 years of data mining and OR: Upcoming trends and challenges
    • Baesens B, Mues C, Martens D and Vanthienen J (2009). 50 years of data mining and OR: Upcoming trends and challenges. J Opl Res Soc 60(Supp1): S16-S23.
    • (2009) J Opl Res Soc , vol.60 , Issue.SUPPL.
    • Baesens, B.1    Mues, C.2    Martens, D.3    Vanthienen, J.4
  • 3
    • 84874606760 scopus 로고    scopus 로고
    • Basel Committee on Banking Supervision (BCBS) (2001, Revised Edition 2005) Bank for International Settlements: Basel
    • Basel Committee on Banking Supervision (BCBS) (2001, Revised Edition 2005). The Internal Ratings-Based Approach-Consultative Document. Bank for International Settlements: Basel.
    • The Internal Ratings-Based Approach-Consultative Document
  • 5
    • 70350291569 scopus 로고    scopus 로고
    • Credit scoring with macroeconomic variables using survival analysis
    • Bellotti T and Crook J (2008). Credit scoring with macroeconomic variables using survival analysis. J Opl Res Soc 60(12): 1699-1707.
    • (2008) J Opl Res Soc , vol.60 , Issue.12 , pp. 1699-1707
    • Bellotti, T.1    Crook, J.2
  • 6
  • 8
    • 84874597618 scopus 로고    scopus 로고
    • British Bankers' Association (BBA) accessed 25 June 2010
    • British Bankers' Association (BBA) (2004). Low default portfolios, http://www.isda.org/c-and-a/pdf/ISDA-LIBA-BBALowDefaul-PortfolioPaper- January2005.pdf, accessed 25 June 2010.
    • (2004) Low Default Portfolios
  • 14
    • 84874616152 scopus 로고    scopus 로고
    • (CML 2010). CML reports decline in arrears and repossessions accessed 12 August 2010
    • (CML 2010). CML reports decline in arrears and repossessions http://www.cml.org.uk/cml/media/press/2680, accessed 12 August 2010.
  • 15
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover T and Hart P (1967). Nearest neighbor pattern classification. IEEE Trans Inform Theory 13(1): 21-27.
    • (1967) IEEE Trans Inform Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 16
    • 21244433075 scopus 로고    scopus 로고
    • Creditscoring models in the credit-union environment using neural networks and genetic algorithms
    • Desai V, Conway D, Crook J and Overstreet G (1997). Creditscoring models in the credit-union environment using neural networks and genetic algorithms. IMA J Mngt Math 8(4): 323.
    • (1997) IMA J Mngt Math , vol.8 , Issue.4 , pp. 323
    • Desai, V.1    Conway, D.2    Crook, J.3    Overstreet, G.4
  • 17
    • 0030240923 scopus 로고    scopus 로고
    • Count data models for a credit scoring system
    • Dionne G, Arts M and Guilleen M (1996). Count data models for a credit scoring system. J Empiric Fin 3(3): 303-325.
    • (1996) J Empiric Fin , vol.3 , Issue.3 , pp. 303-325
    • Dionne, G.1    Arts, M.2    Guilleen, M.3
  • 20
    • 84977404808 scopus 로고
    • Pitfalls in the application of discriminant analysis in business, finance, and economics
    • Eisenbeis R (1977). Pitfalls in the application of discriminant analysis in business, finance, and economics. J Finance 32(3): 875-900.
    • (1977) J Finance , vol.32 , Issue.3 , pp. 875-900
    • Eisenbeis, R.1
  • 21
    • 84874633912 scopus 로고    scopus 로고
    • Likelihood approaches to low default portfolios
    • Credit Research Center, University of Edinburgh
    • Forrest A (2005). Likelihood approaches to low default portfolios. In: Credit Scoring & Credit Control IX. Credit Research Center, University of Edinburgh.
    • (2005) Credit Scoring & Credit Control IX
    • Forrest, A.1
  • 22
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • Friedman M (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J AmStat Assoc 32(200): 675-701.
    • (1937) J AmStat Assoc , vol.32 , Issue.200 , pp. 675-701
    • Friedman, M.1
  • 23
    • 33745886270 scopus 로고    scopus 로고
    • Classifier technology and the illusion of progress
    • Hand DJ (2006). Classifier technology and the illusion of progress. Stat Sci 21(1): 1-14.
    • (2006) Stat Sci , vol.21 , Issue.1 , pp. 1-14
    • Hand, D.J.1
  • 24
    • 69549133517 scopus 로고    scopus 로고
    • Measuring classifier performance: A coherent alternative to the area under the ROC curve
    • Hand DJ (2009). Measuring classifier performance: A coherent alternative to the area under the ROC curve. Mach Learning 77(1): 103-123.
    • (2009) Mach Learning , vol.77 , Issue.1 , pp. 103-123
    • Hand, D.J.1
  • 25
    • 0003008702 scopus 로고
    • Can reject inference ever work
    • Hand DJ and Henley W (1993). Can reject inference ever work IMA J Mngt Math 5(1): 45.
    • (1993) IMA J Mngt Math , vol.5 , Issue.1 , pp. 45
    • Hand, D.J.1    Henley, W.2
  • 27
    • 77956944525 scopus 로고    scopus 로고
    • Evaluating models for classifying customers in retail banking collections
    • Hand DJ and Zhou F (2010). Evaluating models for classifying customers in retail banking collections. J Opl Res Soc 61(10): 1540-1547.
    • (2010) J Opl Res Soc , vol.61 , Issue.10 , pp. 1540-1547
    • Hand, D.J.1    Zhou, F.2
  • 28
    • 85161148381 scopus 로고    scopus 로고
    • The elements of statistical learning: Data mining, inference and prediction
    • Hastie T, Tibshirani R, Friedman J and Franklin J (2005). The elements of statistical learning: Data mining, inference and prediction. Math Intell 27(2): 83-85.
    • (2005) Math Intell , vol.27 , Issue.2 , pp. 83-85
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3    Franklin, J.4
  • 30
    • 1542603058 scopus 로고    scopus 로고
    • A k-nearest-neighbour classifier for assessing consumer credit risk
    • Henley W and Hand D (1996). A k-nearest-neighbour classifier for assessing consumer credit risk. The Statistician 45(1): 77-95.
    • (1996) The Statistician , vol.45 , Issue.1 , pp. 77-95
    • Henley, W.1    Hand, D.2
  • 31
    • 0024732792 scopus 로고
    • Connectionist learning procedures
    • Hinton G (1989). Connectionist learning procedures. Artif Intell 40(1-3): 185-234.
    • (1989) Artif Intell , vol.40 , Issue.1-3 , pp. 185-234
    • Hinton, G.1
  • 33
    • 33750483917 scopus 로고    scopus 로고
    • Inferring descriptive and approximate fuzzy rules for credit scoring using evolutionary algorithms
    • Hoffmann F, Baesens B, Mues C, Van Gestel T and Vanthienen J (2007). Inferring descriptive and approximate fuzzy rules for credit scoring using evolutionary algorithms. Eur J Opl Res 177(1): 540-555.
    • (2007) Eur J Opl Res , vol.177 , Issue.1 , pp. 540-555
    • Hoffmann, F.1    Baesens, B.2    Mues, C.3    Van Gestel, T.4    Vanthienen, J.5
  • 34
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • Holm S (1979). A simple sequentially rejective multiple test procedure. Scand J Stat 6(2): 65-70.
    • (1979) Scand J Stat , vol.6 , Issue.2 , pp. 65-70
    • Holm, S.1
  • 36
    • 76849090813 scopus 로고    scopus 로고
    • Cyclical adjustment of pointin-time PD
    • Ingolfsson S and Elvarsson B (2010). Cyclical adjustment of pointin-time PD. J Opl Res Soc 61(3): 374-380.
    • (2010) J Opl Res Soc , vol.61 , Issue.3 , pp. 374-380
    • Ingolfsson, S.1    Elvarsson, B.2
  • 39
    • 84874634712 scopus 로고    scopus 로고
    • Why the lack of reproducibility is crippling research in data mining and what you can do about it
    • association with ACM SIGKDD 2007). ACM: New York
    • Keogh E (2007). Why the lack of reproducibility is crippling research in data mining and what you can do about it. In: Proceedings of the 8th International Workshop on Multimedia DM (association with ACM SIGKDD 2007). ACM: New York, p. 2.
    • (2007) Proceedings of the 8th International Workshop on Multimedia DM , pp. 2
    • Keogh, E.1
  • 43
    • 77951204543 scopus 로고    scopus 로고
    • A hybrid model for plastic card fraud detection systems
    • Krivko M (2010). A hybrid model for plastic card fraud detection systems. Expert Syst Appl 37(8): 6070-6076.
    • (2010) Expert Syst Appl , vol.37 , Issue.8 , pp. 6070-6076
    • Krivko, M.1
  • 44
    • 33846414683 scopus 로고    scopus 로고
    • Focusing on non-respondents: Response modeling with novelty detectors
    • Lee H and Cho S (2007). Focusing on non-respondents: Response modeling with novelty detectors. Expert Syst Appl 33(2): 522-530.
    • (2007) Expert Syst Appl , vol.33 , Issue.2 , pp. 522-530
    • Lee, H.1    Cho, S.2
  • 45
    • 49349089233 scopus 로고    scopus 로고
    • Benchmarking classification models for software defect prediction: A proposed framework and novel findings
    • Lessmann S, Baesens B, Mues C and Pietsch S (2008). Benchmarking classification models for software defect prediction: A proposed framework and novel findings. IEEE Trans Software Eng 34(4): 485-496.
    • (2008) IEEE Trans Software Eng , vol.34 , Issue.4 , pp. 485-496
    • Lessmann, S.1    Baesens, B.2    Mues, C.3    Pietsch, S.4
  • 46
    • 76849083762 scopus 로고    scopus 로고
    • Modelling credit risk of portfolio of consumer loans
    • Malik M and Thomas L (2010). Modelling credit risk of portfolio of consumer loans. J Opl Res Soc 61(3): 411-420.
    • (2010) J Opl Res Soc , vol.61 , Issue.3 , pp. 411-420
    • Malik, M.1    Thomas, L.2
  • 49
    • 84874620116 scopus 로고
    • Clinical versus statistical prediction
    • Meehl P (1955). Clinical versus statistical prediction. J Consult Psychol 19: 155.
    • (1955) J Consult Psychol , vol.19 , pp. 155
    • Meehl, P.1
  • 51
    • 0010142578 scopus 로고
    • One-class classifier networks for target recognition applications
    • Sandia National Labs, Albuquerque, NM, USA
    • Moya M, Koch M and Hostetler L (1993). One-class classifier networks for target recognition applications. Technical Report SAND-93-0084C, Sandia National Labs, Albuquerque, NM, USA.
    • (1993) Technical Report SAND-93-0084C
    • Moya, M.1    Koch, M.2    Hostetler, L.3
  • 52
    • 56349112745 scopus 로고    scopus 로고
    • An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring
    • Nanni L and Lumini A (2009). An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring. Expert Syst Appl 36(2): 3028-3033.
    • (2009) Expert Syst Appl , vol.36 , Issue.2 , pp. 3028-3033
    • Nanni, L.1    Lumini, A.2
  • 53
    • 0002882138 scopus 로고
    • The flat-maximum effect and generic linear scoring models: A test
    • Overstreet G, Bradley E and Kemp R (1992). The flat-maximum effect and generic linear scoring models: A test. IMA J Mngt Math 4(1): 97.
    • (1992) IMA J Mngt Math , vol.4 , Issue.1 , pp. 97
    • Overstreet, G.1    Bradley, E.2    Kemp, R.3
  • 54
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Parzen E (1962). On estimation of a probability density function and mode. Ann Math Stat 33(3): 1065-1076.
    • (1962) Ann Math Stat , vol.33 , Issue.3 , pp. 1065-1076
    • Parzen, E.1
  • 56
    • 0032749972 scopus 로고    scopus 로고
    • Financial credit-risk evaluation with neural and neurofuzzy systems
    • Piramuthu S (1999). Financial credit-risk evaluation with neural and neurofuzzy systems. Eur J Opl Res 112(2): 310-321.
    • (1999) Eur J Opl Res , vol.112 , Issue.2 , pp. 310-321
    • Piramuthu, S.1
  • 57
    • 84874613460 scopus 로고    scopus 로고
    • Estimating probabilities of default for low-default portfolios
    • Pluto K and Tasche D (2006). Estimating probabilities of default for low-default portfolios. The Basel II Risk Parameters: 79-103.
    • (2006) The Basel II Risk Parameters , pp. 79-103
    • Pluto, K.1    Tasche, D.2
  • 60
    • 0031169206 scopus 로고    scopus 로고
    • Outliers in statistical pattern recognition and an application to automatic chromosome classification
    • Ritter G and Gallegos M (1997). Outliers in statistical pattern recognition and an application to automatic chromosome classification. Pattern Recog Lett 18(6): 525-539.
    • (1997) Pattern Recog Lett , vol.18 , Issue.6 , pp. 525-539
    • Ritter, G.1    Gallegos, M.2
  • 62
    • 27644476268 scopus 로고    scopus 로고
    • Fault detection in reactive ion etching systems using one-class support vector machines
    • Carbone T, Werbaneth P, Fathulla A and Piliszczuk T (eds) IEEE: Munich, Germany
    • Sarmiento T, Hong S andMay G (2005). Fault detection in reactive ion etching systems using one-class support vector machines. In: Carbone T, Werbaneth P, Fathulla A and Piliszczuk T (eds). Proceedings of IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop. IEEE: Munich, Germany, pp. 139-142.
    • (2005) Proceedings of IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop , pp. 139-142
    • Sarmiento, T.1    Hong, S.2    May, G.3
  • 63
    • 24144458623 scopus 로고    scopus 로고
    • Support vector machines for classifying and describing credit applicants: Detecting typical and critical regions
    • Schebesch K and Stecking R (2005). Support vector machines for classifying and describing credit applicants: Detecting typical and critical regions. J Opl Res Soc 56(9): 1082-1088.
    • (2005) J Opl Res Soc , vol.56 , Issue.9 , pp. 1082-1088
    • Schebesch, K.1    Stecking, R.2
  • 64
    • 59249102888 scopus 로고    scopus 로고
    • The credit rating process and estimation of transition probabilities: A Bayesian approach
    • Stefanescu C, Tunaru R and Turnbull S (2009). The credit rating process and estimation of transition probabilities: A Bayesian approach. J Empiric Fin 16(2): 216-234.
    • (2009) J Empiric Fin , vol.16 , Issue.2 , pp. 216-234
    • Stefanescu, C.1    Tunaru, R.2    Turnbull, S.3
  • 65
    • 13644255454 scopus 로고    scopus 로고
    • Predicting multilateral trade credit risks: Comparisons of logit and fuzzy logic models using ROC curve analysis
    • Tang T and Chi L (2005). Predicting multilateral trade credit risks: Comparisons of logit and fuzzy logic models using ROC curve analysis. Expert Syst Appl 28(3): 547-556.
    • (2005) Expert Syst Appl , vol.28 , Issue.3 , pp. 547-556
    • Tang, T.1    Chi, L.2
  • 66
    • 0037753593 scopus 로고    scopus 로고
    • PhD thesis Delft University of Technology
    • Tax D (2001). One-class classification. PhD thesis, Delft University of Technology.
    • (2001) One-class Classification
    • Tax, D.1
  • 68
    • 0033220728 scopus 로고    scopus 로고
    • Support vector domain description
    • Tax D and Duin R (1999). Support vector domain description. Pattern Recog Lett 20(11-13): 1191-1199.
    • (1999) Pattern Recog Lett , vol.20 , Issue.11-13 , pp. 1191-1199
    • Tax, D.1    Duin, R.2
  • 70
    • 71749107984 scopus 로고    scopus 로고
    • Consumer finance: Challenges for operational research
    • Thomas L (2009). Consumer finance: Challenges for operational research. J Opl Res Soc 61(1): 41-52.
    • (2009) J Opl Res Soc , vol.61 , Issue.1 , pp. 41-52
    • Thomas, L.1
  • 72
    • 38649113538 scopus 로고    scopus 로고
    • Using neural network ensembles for bankruptcy prediction and credit scoring
    • Tsai C and Wu J (2008). Using neural network ensembles for bankruptcy prediction and credit scoring. Expert Syst Appl 34(4): 2639-2649.
    • (2008) Expert Syst Appl , vol.34 , Issue.4 , pp. 2639-2649
    • Tsai, C.1    Wu, J.2
  • 75
    • 19344374576 scopus 로고    scopus 로고
    • Scorecard construction with unbalanced class sizes
    • Vinciotti V and Hand DJ (2003). Scorecard construction with unbalanced class sizes. J Iranian Statist Soc 2(2): 189-205.
    • (2003) J Iranian Statist Soc , vol.2 , Issue.2 , pp. 189-205
    • Vinciotti, V.1    Hand, D.J.2
  • 77
    • 0034118581 scopus 로고    scopus 로고
    • Neural network credit scoring models
    • West D (2000). Neural network credit scoring models. Comput Opns Res 27(11-12): 1131-1152.
    • (2000) Comput Opns Res , vol.27 , Issue.11-12 , pp. 1131-1152
    • West, D.1
  • 78
    • 0035546592 scopus 로고    scopus 로고
    • Default probabilities in a corporate bank portfolio: A logistic model approach
    • Westgaard S and van der Wijst N (2001). Default probabilities in a corporate bank portfolio: A logistic model approach. Eur J Opl Res 135(2): 338-349.
    • (2001) Eur J Opl Res , vol.135 , Issue.2 , pp. 338-349
    • Westgaard, S.1    Van Der Wijst, N.2
  • 80
    • 33845671851 scopus 로고    scopus 로고
    • A comparative study of data mining methods in consumer loans credit scoring management
    • Xiao W, Zhao Q and Fei Q (2006). A comparative study of data mining methods in consumer loans credit scoring management. J Syst Sci Syst Eng 15(4): 419-435.
    • (2006) J Syst Sci Syst Eng , vol.15 , Issue.4 , pp. 419-435
    • Xiao, W.1    Zhao, Q.2    Fei, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.