-
1
-
-
3242757541
-
Boundary Layer Techniques for Solving the Helmholtz Equation in the Presence of Small Inhomogeneities
-
H. Ammari and H. Kang, Boundary Layer Techniques for Solving the Helmholtz Equation in the Presence of Small Inhomogeneities, J. Math. Anal. Appl. 296(1) (2004), pp. 190-208.
-
(2004)
J. Math. Anal. Appl
, vol.296
, Issue.1
, pp. 190-208
-
-
Ammari, H.1
Kang, H.2
-
2
-
-
18144380854
-
Reconstruction of Small Inhomogeneities from Boundary Measurements
-
Springer-Verlag, Berlin
-
H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements, Lecture Notes in Mathematics, Vol. 1846, Springer-Verlag, Berlin, 2004.
-
Lecture Notes In Mathematics
, vol.1846
, pp. 2004
-
-
Ammari, H.1
Kang, H.2
-
3
-
-
77955898990
-
Optimization algorithm for reconstructing interface changes of a conductivity inclusion from modal measurements
-
H. Ammari, E. Beretta, E. Francini, H. Kang, and M. Lim, Optimization algorithm for reconstructing interface changes of a conductivity inclusion from modal measurements, Math. Comput. 79 (2010), pp. 1757-1777.
-
(2010)
Math. Comput
, vol.79
, pp. 1757-1777
-
-
Ammari, H.1
Beretta, E.2
Francini, E.3
Kang, H.4
Lim, M.5
-
4
-
-
77955909898
-
Reconstruction of small interface changes of an inclusion from modal measurements II: The elastic case
-
H. Ammari, E. Beretta, E. Francini, H. Kang, and M. Lim, Reconstruction of small interface changes of an inclusion from modal measurements II: The elastic case, J. Math. Pures Appl. 94 (2010), pp. 322-339.
-
(2010)
J. Math. Pures Appl
, vol.94
, pp. 322-339
-
-
Ammari, H.1
Beretta, E.2
Francini, E.3
Kang, H.4
Lim, M.5
-
5
-
-
77950653003
-
Layer Potential Techniques in Spectral Analysis
-
American Mathematical Society, Providence RI
-
H. Ammari, H. Kang, and H. Lee, Layer Potential Techniques in Spectral Analysis, Mathematical Surveys and Monographs, Vol. 153, American Mathematical Society, Providence RI, 2009.
-
(2009)
Mathematical Surveys and Monographs
, vol.153
-
-
Ammari, H.1
Kang, H.2
Lee, H.3
-
6
-
-
77950915517
-
Conductivity interface problems. Part I: Small perturbations of an interface
-
H. Ammari, H. Kang, M. Lim, and H. Zribi, Conductivity interface problems. Part I: small perturbations of an interface, Trans. Am. Math. Soc. 362 (2010), pp. 2901-2922.
-
(2010)
Trans. Am. Math. Soc
, vol.362
, pp. 2901-2922
-
-
Ammari, H.1
Kang, H.2
Lim, M.3
Zribi, H.4
-
7
-
-
84859634737
-
The generalized polarization tensors for resolved imaging. Part I: Shape reconstruction of a conductivity inclusion
-
to appear
-
H. Ammari, H. Kang, M. Lim, and H. Zribi, The generalized polarization tensors for resolved imaging. Part I: Shape reconstruction of a conductivity inclusion, Math. Comput. (to appear).
-
Math. Comput
-
-
Ammari, H.1
Kang, H.2
Lim, M.3
Zribi, H.4
-
8
-
-
0035537076
-
Asymptotic formulas for steady state voltage potentials in the presence of conductivity imperfections of small area
-
E. Beretta, A. Mukherjee, and M.S. Vogelius, Asymptotic formulas for steady state voltage potentials in the presence of conductivity imperfections of small area, Z. Angew. Math. Phys. 52 (2001), pp. 543-572.
-
(2001)
Z. Angew. Math. Phys
, vol.52
, pp. 543-572
-
-
Beretta, E.1
Mukherjee, A.2
Vogelius, M.S.3
-
9
-
-
0032629728
-
An improved operator expansion algorithm for direct and inverse scattering computations
-
R.R. Coifman, M. Goldberg, T. Hrycak, M. Israeli, and V. Rokhlin, An improved operator expansion algorithm for direct and inverse scattering computations, Waves Random Media 9 (1999), pp. 441-457.
-
(1999)
Waves Random Media
, vol.9
, pp. 441-457
-
-
Coifman, R.R.1
Goldberg, M.2
Hrycak, T.3
Israeli, M.4
Rokhlin, V.5
-
10
-
-
0002215984
-
The determination of a discontinuity in a conductivity from a single boundary measurement
-
F. Hettlich and W. Rundell, The determination of a discontinuity in a conductivity from a single boundary measurement, Inverse Probl. 14 (1998), pp. 67-82.
-
(1998)
Inverse Probl
, vol.14
, pp. 67-82
-
-
Hettlich, F.1
Rundell, W.2
-
11
-
-
47749116429
-
An asymptotic formalism for reconstructing small perturbations of scatterers from electric or acoustic far-field measurements
-
M. Lim, K. Louati, and H. Zribi, An asymptotic formalism for reconstructing small perturbations of scatterers from electric or acoustic far-field measurements, Math. Methods. Appl. Sci. 31(11) (2008), pp. 1315-1332.
-
(2008)
Math. Methods. Appl. Sci
, vol.31
, Issue.11
, pp. 1315-1332
-
-
Lim, M.1
Louati, K.2
Zribi, H.3
-
12
-
-
0042278863
-
Recovery of small perturbations of an interface for an elliptic inverse problem via linearization
-
C.F. Tolmasky and A. Wiegmann, Recovery of small perturbations of an interface for an elliptic inverse problem via linearization, Inverse Probl. 15 (1999), pp. 465-487.
-
(1999)
Inverse Probl
, vol.15
, pp. 465-487
-
-
Tolmasky, C.F.1
Wiegmann, A.2
-
14
-
-
0003275409
-
Inverse Acoustic and Electromagnetic Scattering Theory
-
Springer-Verlag, Berlin
-
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Applied Math. Sciences, Vol. 93, Springer-Verlag, Berlin, 1992.
-
(1992)
Applied Math. Sciences
, vol.93
-
-
Colton, D.1
Kress, R.2
-
15
-
-
0000410847
-
L'intégrale de Cauchy définit un opérateur borné sur L2 pour les courbes Lipschitziennes
-
R.R. Coifman, A. McIntosh, and Y. Meyer, L'intégrale de Cauchy définit un opérateur borné sur L2 pour les courbes Lipschitziennes, Ann. Math. 116 (1982), pp. 361-387.
-
(1982)
Ann. Math
, vol.116
, pp. 361-387
-
-
Coifman, R.R.1
McIntosh, A.2
Meyer, Y.3
|