메뉴 건너뛰기




Volumn , Issue , 2012, Pages 6708-6715

Loss bounds for uncertain transition probabilities in Markov decision processes

Author keywords

[No Author keywords available]

Indexed keywords

DYNAMIC PROGRAMMING; MARKOV PROCESSES;

EID: 84874269643     PISSN: 07431546     EISSN: 25762370     Source Type: Conference Proceeding    
DOI: 10.1109/CDC.2012.6426504     Document Type: Conference Paper
Times cited : (16)

References (22)
  • 2
    • 0015630091 scopus 로고
    • Markovian decision processes with uncertain transition probabilities
    • J. K. Satia and R. E. Lave Jr., "Markovian decision processes with uncertain transition probabilities," Operations Research, vol. 21, no. 3, pp. 728-740, 1973.
    • (1973) Operations Research , vol.21 , Issue.3 , pp. 728-740
    • Satia, J.K.1    Lave Jr., R.E.2
  • 4
    • 0032399375 scopus 로고    scopus 로고
    • Controlled Markov set-chains with discounting
    • M. Kurano, M. Hosaka, Y. Huang, and J. Song, "Controlled Markov set-chains with discounting." J. Appl. Probab., vol. 35, no. 2, pp. 293-302, 1998.
    • (1998) J. Appl. Probab. , vol.35 , Issue.2 , pp. 293-302
    • Kurano, M.1    Hosaka, M.2    Huang, Y.3    Song, J.4
  • 5
    • 14344250395 scopus 로고    scopus 로고
    • Robust control of Markov decision processes with uncertain transition matrices
    • September-October
    • A. Nilim and L. El Ghaoui, "Robust control of Markov decision processes with uncertain transition matrices," Oper. Res., vol. 53, no. 5, pp. 780-798, September-October 2005.
    • (2005) Oper. Res. , vol.53 , Issue.5 , pp. 780-798
    • Nilim, A.1    El Ghaoui, L.2
  • 6
    • 79953864311 scopus 로고    scopus 로고
    • Efficient solutions to factored MDPs with imprecise transition probabilities
    • K. V. Delgado, S. Sanner, and L. N. de Barros, "Efficient solutions to factored MDPs with imprecise transition probabilities," Artificial Intelligence, vol. 175, no. 910, pp. 1498 - 1527, 2011.
    • (2011) Artificial Intelligence , vol.175 , Issue.910 , pp. 1498-1527
    • Delgado, K.V.1    Sanner, S.2    De Barros, L.N.3
  • 7
    • 0028460403 scopus 로고
    • Markov decision processes with imprecise transition probabilities
    • C. C. White III and H. K. Eldeib, "Markov decision processes with imprecise transition probabilities," Operations Research, vol. 42, pp. 739-749, 1994.
    • (1994) Operations Research , vol.42 , pp. 739-749
    • White III, C.C.1    Eldeib, H.K.2
  • 8
    • 0034272032 scopus 로고    scopus 로고
    • Bounded-parameter Markov decision processes
    • R. Givan, S. Leach, and T. Dean, "Bounded-parameter Markov decision processes," Artificial Intelligence, vol. 122, pp. 71-109, 2000.
    • (2000) Artificial Intelligence , vol.122 , pp. 71-109
    • Givan, R.1    Leach, S.2    Dean, T.3
  • 9
    • 0023961231 scopus 로고
    • Sensitivity analysis in discrete dynamic programming
    • February
    • W. J. Hopp, "Sensitivity analysis in discrete dynamic programming," J. Optim. Theory Appl., vol. 56, pp. 257-269, February 1988.
    • (1988) J. Optim. Theory Appl. , vol.56 , pp. 257-269
    • Hopp, W.J.1
  • 10
    • 0031272080 scopus 로고    scopus 로고
    • How does the value function of a Markov decision process depend on the transition probabilities?
    • November
    • A. Müller, "How does the value function of a Markov decision process depend on the transition probabilities?" Math. Oper. Res., vol. 22, pp. 872-885, November 1997.
    • (1997) Math. Oper. Res. , vol.22 , pp. 872-885
    • Müller, A.1
  • 12
    • 84855284034 scopus 로고    scopus 로고
    • Sensitivity analysis in Markov decision processes with uncertain reward parameters
    • - "Sensitivity analysis in Markov decision processes with uncertain reward parameters," Journal of Applied Probability, vol. 48, no. 4, pp. 954 - 967, 2011.
    • (2011) Journal of Applied Probability , vol.48 , Issue.4 , pp. 954-967
    • Tan, C.H.1    Hartman, J.C.2
  • 13
    • 0028497385 scopus 로고
    • An upper bound on the loss from approximate optimal-value functions
    • S. P. Singh and R. C. Yee, "An upper bound on the loss from approximate optimal-value functions," Machine Learning, vol. 16, no. 3, pp. 227-233, 1994.
    • (1994) Machine Learning , vol.16 , Issue.3 , pp. 227-233
    • Singh, S.P.1    Yee, R.C.2
  • 14
    • 84880649215 scopus 로고    scopus 로고
    • A sparse sampling algorithm for near-optimal planning in large Markov decision processes
    • M. Kearns, Y. Mansour, and A. Y. Ng, "A sparse sampling algorithm for near-optimal planning in large Markov decision processes," in Machine Learning, 1999, pp. 1324-1331.
    • (1999) Machine Learning , pp. 1324-1331
    • Kearns, M.1    Mansour, Y.2    Ng, A.Y.3
  • 15
    • 84880899936 scopus 로고    scopus 로고
    • Performance analysis of online anticipatory algorithms for large multistage stochastic integer programs
    • San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
    • L. Mercier and P. Van Hentenryck, "Performance analysis of online anticipatory algorithms for large multistage stochastic integer programs," in Proceedings of the 20th international joint conference on Artifical intelligence, ser. IJCAI'07. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007, pp. 1979-1984.
    • (2007) Proceedings of the 20th International Joint Conference on Artifical Intelligence, Ser. IJCAI'07 , pp. 1979-1984
    • Mercier, L.1    Van Hentenryck, P.2
  • 18
    • 1942516880 scopus 로고    scopus 로고
    • Error bounds for approximate policy iteration
    • R. Munos, "Error bounds for approximate policy iteration," in ICML, 2003, pp. 560-567.
    • (2003) ICML , pp. 560-567
    • Munos, R.1
  • 19
    • 85162063395 scopus 로고    scopus 로고
    • Error propagation for approximate policy and value iteration
    • A. M. Farahmand, R. Munos, and C. Szepesvári, "Error propagation for approximate policy and value iteration," in NIPS, 2010, pp. 568-576.
    • (2010) NIPS , pp. 568-576
    • Farahmand, A.M.1    Munos, R.2    Szepesvári, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.