메뉴 건너뛰기




Volumn 10, Issue 13 S, 2013, Pages 21-40

Neural network-based adaptive feedback linearization control of antilock braking system

Author keywords

Antilock braking system; Feedback linearization; Friction model; Neural network; Slip control

Indexed keywords


EID: 84873824627     PISSN: 09740635     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (38)

References (35)
  • 4
    • 85072506304 scopus 로고
    • A new tire model with an application in vehicle dynamics studies
    • Bakker, E., Pacejka, H. and Lidner, L. 1989. A new tire model with an application in vehicle dynamics studies, SAE Technical Series (890087): 83-95.
    • (1989) SAE Technical Series , pp. 83-95
    • Bakker, E.1    Pacejka, H.2    Lidner, L.3
  • 10
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K. M., Stinchcombe, M. and White, H. 1989. Multilayer feedforward networks are universal approximators, Journal of Neural Networks 2: 359-366.
    • (1989) Journal of Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.M.1    Stinchcombe, M.2    White, H.3
  • 14
    • 0037358586 scopus 로고    scopus 로고
    • Neural-network hybrid control for antilock braking systems
    • Lin, C.-M. and Hsu, C.-F. 2003. Neural-network hybrid control for antilock braking systems, IEEE Transactions on Neural Networks 14(2): 351-359.
    • (2003) IEEE Transactions On Neural Networks , vol.14 , Issue.2 , pp. 351-359
    • Lin, C.-M.1    Hsu, C.-F.2
  • 15
    • 33846185400 scopus 로고    scopus 로고
    • Nonlinear control design of anti-lock braking systems with assistance of active suspension
    • Lin, J.-S. and Ting, W.-E. 2007. Nonlinear control design of anti-lock braking systems with assistance of active suspension, Control Theory Applications, IET 1(1): 343-348.
    • (2007) Control Theory Applications, IET , vol.1 , Issue.1 , pp. 343-348
    • Lin, J.-S.1    Ting, W.-E.2
  • 25
    • 67349257989 scopus 로고    scopus 로고
    • Adaptive feedback linearization control of antilock braking systems using neural networks
    • Poursamad, A. 2009. Adaptive feedback linearization control of antilock braking systems using neural networks, Mechatronics 19(5): 767-773.
    • (2009) Mechatronics , vol.19 , Issue.5 , pp. 767-773
    • Poursamad, A.1
  • 28
    • 79956045293 scopus 로고    scopus 로고
    • Neuro-fuzzy control of antilock braking system using sliding mode incremental learning algorithm
    • Topalov, A. V., Oniz, Y., Kayacan, E. and Kaynak, O. 2011. Neuro-fuzzy control of antilock braking system using sliding mode incremental learning algorithm, Neurocomputing 74(11): 1883-1893.
    • (2011) Neurocomputing , vol.74 , Issue.11 , pp. 1883-1893
    • Topalov, A.V.1    Oniz, Y.2    Kayacan, E.3    Kaynak, O.4
  • 32
    • 0035343073 scopus 로고    scopus 로고
    • Adaptive feedback linearization using efficient neural networks
    • Yeşildirek, A. and Lewis, F. L. 2001. Adaptive feedback linearization using efficient neural networks, J. Intell. Robotics Syst. 31: 253-281.
    • (2001) J. Intell. Robotics Syst , vol.31 , pp. 253-281
    • Yeşildirek, A.1    Lewis, F.L.2
  • 34
    • 20544466555 scopus 로고    scopus 로고
    • A fuzzy logic controller design for vehicle ABS with a on-line optimized target wheel slip ratio
    • Yu, F., Feng, J. and Li, J. 2002. A fuzzy logic controller design for vehicle ABS with a on-line optimized target wheel slip ratio, International Journal of Automotive Technology 3(4): 165-170.
    • (2002) International Journal of Automotive Technology , vol.3 , Issue.4 , pp. 165-170
    • Yu, F.1    Feng, J.2    Li, J.3
  • 35
    • 85072360399 scopus 로고
    • Measurement and simulation of transients in longitudinal and lateral tire forces
    • 900210
    • Zanten, A., Erhardt, R. and Lutz, A. 1990. Measurement and simulation of transients in longitudinal and lateral tire forces, SAE Technical Series 99(900210): 300-318.
    • (1990) SAE Technical Series , vol.99 , pp. 300-318
    • Zanten, A.1    Erhardt, R.2    Lutz, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.