메뉴 건너뛰기




Volumn 6, Issue , 2011, Pages 4476-4486

Modeling solar combisystems performances using an artificial neural network approach

Author keywords

Artificial neural network; Characterization; Performance prediction; Solar combisystem

Indexed keywords

ARTIFICIAL NEURAL NETWORK APPROACH; DATA SETS; ENERGY INSTITUTE; PERFORMANCE PREDICTION; PERFORMANCE TESTS; SCS MODEL; SHORT CYCLE; SOLAR COMBISYSTEMS;

EID: 84873804851     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (2)

References (19)
  • 1
    • 84873843418 scopus 로고    scopus 로고
    • Thermal performance evaluation of solar combisystems using a global approach
    • Albaric, M., Nowag, J., Papillon, P., 2008. Thermal performance evaluation of solar combisystems using a global approach. Eurosun 2008, Lisbon, Portugal. 8 pages.
    • (2008) Eurosun 2008, Lisbon, Portugal , pp. 8
    • Albaric, M.1    Nowag, J.2    Papillon, P.3
  • 6
    • 84862127324 scopus 로고    scopus 로고
    • European standard EN 442-2, Comité Européen de Normalisation, Bruxelles
    • European standard EN 442-2, 1996. Radiators and convectors. Part 2: Test methods and ratings. Comité Européen de Normalisation, Bruxelles.
    • (1996) Radiators and Convectors. Part 2: Test Methods and Ratings
  • 10
    • 0034963531 scopus 로고    scopus 로고
    • Artificial neural networks in renewable energy systems applications: A review
    • Kalogirou, S.A., 2001. Artificial neural networks in renewable energy systems applications: a review. Renewable and sustainable energy reviews, 5, pp.373-401.
    • (2001) Renewable and Sustainable Energy Reviews , vol.5 , pp. 373-401
    • Kalogirou, S.A.1
  • 11
    • 67749145133 scopus 로고    scopus 로고
    • A new concept for combisystems characterization: The FSC method
    • Letz, T., Bales, C., Perers, B., 2009. A new concept for combisystems characterization: The FSC method. Solar Energy, 83, pp.1540-1549.
    • (2009) Solar Energy , vol.83 , pp. 1540-1549
    • Letz, T.1    Bales, C.2    Perers, B.3
  • 12
    • 78649959469 scopus 로고    scopus 로고
    • Perspectives on system identification
    • Ljung, L., 2010. Perspectives on system identification. Annual reviews in control, 34, pp.1-12.
    • (2010) Annual Reviews in Control , vol.34 , pp. 1-12
    • Ljung, L.1
  • 13
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • Mackay, D.J.C., 1992. A practical Bayesian framework for backpropagation networks. Neural computation, 4, pp.448-472.
    • (1992) Neural Computation , vol.4 , pp. 448-472
    • Mackay, D.J.C.1
  • 16
    • 0025536870 scopus 로고
    • Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptative weights
    • Nguyen, D., Widrow, B., 1990. Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptative weights. Proceeding of the International Joint Conference on Neural Networks. 3, 21-26.
    • (1990) Proceeding of the International Joint Conference on Neural Networks , vol.3 , pp. 21-26
    • Nguyen, D.1    Widrow, B.2
  • 18
    • 0031126507 scopus 로고    scopus 로고
    • An improved dynamic solar collector test method for determination of non-linear optical and thermal characteristics with multiple regressions
    • Perers, B., 1997. An improved dynamic solar collector test method for determination of non-linear optical and thermal characteristics with multiple regressions. Solar Energy, 59, pp.163-178.
    • (1997) Solar Energy , vol.59 , pp. 163-178
    • Perers, B.1
  • 19
    • 84873873757 scopus 로고    scopus 로고
    • Réglementation Thermique Website : access 4/21/2011
    • Réglementation Thermique 2005, 2006. Méthode de calcul Th-CE, Annexe à l'arrêté du 19 juillet 2006. Website : http://www.rt-batiment.fr/fileadmin/documents/RT2005/pdf/Methode-Th-CE.pdf (access 4/21/2011).
    • (2005) Méthode de Calcul Th-CE, Annexe à l'Arrêté du 19 Juillet 2006


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.