메뉴 건너뛰기




Volumn 9, Issue 2, 2013, Pages 185-193

Multiple fold increase in activity of ferroxidase-apoferritin complex by silver and gold nanoparticles

Author keywords

Apoferritin; Ferroxidase activity; Gold nanoparticles; Silver nanoparticles

Indexed keywords

APOFERRITIN; AVERAGE SIZE; COLOR CHANGES; EFFECT OF SILVERS; ENERGY DISPERSIVE X-RAY SPECTROSCOPY; FERROXIDASE ACTIVITY; FOURIER TRANSFORM INFRARED SPECTROMETRY; GOLD AND SILVER NANOPARTICLES; GOLD NANOPARTICLES; INDUCTIVELY COUPLED PLASMA-OPTICAL EMISSION SPECTROSCOPY; MOLAR RATIO; NANOPARTICLE (NPS); SILVER AND GOLD NANOPARTICLES; SILVER NANOPARTICLES; SODIUM BORO HYDRIDES; SPECIFIC ACTIVITY; STRUCTURAL CHANGE;

EID: 84873743675     PISSN: 15499634     EISSN: 15499642     Source Type: Journal    
DOI: 10.1016/j.nano.2012.05.020     Document Type: Article
Times cited : (16)

References (37)
  • 1
  • 2
    • 4444231777 scopus 로고    scopus 로고
    • Biosynthesis of metal nanoparticles using fungi and actinomycete
    • Sastry M., Ahmad A., Khan M.I., Kumar R. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 2003, 85:162-170.
    • (2003) Curr Sci , vol.85 , pp. 162-170
    • Sastry, M.1    Ahmad, A.2    Khan, M.I.3    Kumar, R.4
  • 3
    • 0041993961 scopus 로고    scopus 로고
    • Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species
    • Ahmad A., Senapati S., Khan M.I., Kumar R., Ramani R., Srinivas V., et al. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 2003, 14:824-828.
    • (2003) Nanotechnology , vol.14 , pp. 824-828
    • Ahmad, A.1    Senapati, S.2    Khan, M.I.3    Kumar, R.4    Ramani, R.5    Srinivas, V.6
  • 4
    • 33745727639 scopus 로고    scopus 로고
    • Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp lycopersici using response surface methodology
    • Riddin T.L., Gericke M., Whiteley C.G. Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp lycopersici using response surface methodology. Nanotechnology 2006, 17:3482-3489.
    • (2006) Nanotechnology , vol.17 , pp. 3482-3489
    • Riddin, T.L.1    Gericke, M.2    Whiteley, C.G.3
  • 5
    • 34250871713 scopus 로고    scopus 로고
    • Bioreduction of platinum (IV) from aqueous solution using sulphate-reducing bacteria
    • Rashamuse K., Whiteley C.G. Bioreduction of platinum (IV) from aqueous solution using sulphate-reducing bacteria. Appl Microbiol Biotechnol 2007, 75:1429-1435.
    • (2007) Appl Microbiol Biotechnol , vol.75 , pp. 1429-1435
    • Rashamuse, K.1    Whiteley, C.G.2
  • 6
    • 68349157664 scopus 로고    scopus 로고
    • Two different hydrogenase enzymes from sulphate-reducing bacteria are responsible for the bioreductive mechanism of platinum into nanoparticles
    • Riddin T.L., Govender Y., Gericke M., Whiteley C.G. Two different hydrogenase enzymes from sulphate-reducing bacteria are responsible for the bioreductive mechanism of platinum into nanoparticles. Enz Microbial Technol 2009, 45:267-273.
    • (2009) Enz Microbial Technol , vol.45 , pp. 267-273
    • Riddin, T.L.1    Govender, Y.2    Gericke, M.3    Whiteley, C.G.4
  • 7
    • 77950337645 scopus 로고    scopus 로고
    • Biological synthesis of platinum nanoparticles: effect of initial metal concentration
    • Riddin T.L., Gericke M., Whiteley C.G. Biological synthesis of platinum nanoparticles: effect of initial metal concentration. Enz Microbial Technol 2010, 46:501-505.
    • (2010) Enz Microbial Technol , vol.46 , pp. 501-505
    • Riddin, T.L.1    Gericke, M.2    Whiteley, C.G.3
  • 8
    • 84856555791 scopus 로고    scopus 로고
    • Enzymatic synthesis of platinum nanoparticles: prokaryote and eukaryote systems
    • Springer-Verlag, New York, M. Rai, N. Duran, G. Southam (Eds.)
    • Whiteley C.G., Govender Y., Riddin T., Rai M. Enzymatic synthesis of platinum nanoparticles: prokaryote and eukaryote systems. Metal nanoparticles in microbiology 2011, 103-134. Springer-Verlag, New York. M. Rai, N. Duran, G. Southam (Eds.).
    • (2011) Metal nanoparticles in microbiology , pp. 103-134
    • Whiteley, C.G.1    Govender, Y.2    Riddin, T.3    Rai, M.4
  • 12
    • 4544265587 scopus 로고    scopus 로고
    • Size-selective olefin hydrogenation by Pd nanocluster provided in an apoferritin cage
    • Ueno T., Suzuki M., Goto T., Matsumoto T., Nagayama K., Watanabe Y. Size-selective olefin hydrogenation by Pd nanocluster provided in an apoferritin cage. Angew Chem Int Edn 2004, 43:2527-2530.
    • (2004) Angew Chem Int Edn , vol.43 , pp. 2527-2530
    • Ueno, T.1    Suzuki, M.2    Goto, T.3    Matsumoto, T.4    Nagayama, K.5    Watanabe, Y.6
  • 13
    • 70350094372 scopus 로고    scopus 로고
    • Biological synthesis of platinum nanoparticles with apoferritin
    • Deng Q.Y., Yang B., Wang J.F., Whiteley C.G., Wang X.N. Biological synthesis of platinum nanoparticles with apoferritin. Biotechnol Lett 2009, 31:1505-1509.
    • (2009) Biotechnol Lett , vol.31 , pp. 1505-1509
    • Deng, Q.Y.1    Yang, B.2    Wang, J.F.3    Whiteley, C.G.4    Wang, X.N.5
  • 14
    • 23644436163 scopus 로고    scopus 로고
    • Preparation of Cu and CuFe Prussian Blue derivative nanoparticles using apoferritin cavity as nanoreactor
    • Gálvez N., Sanchez P., Domínguez-Vera J.M. Preparation of Cu and CuFe Prussian Blue derivative nanoparticles using apoferritin cavity as nanoreactor. J Chem Soc (Dalton) 2005, 2492-2494.
    • (2005) J Chem Soc (Dalton) , pp. 2492-2494
    • Gálvez, N.1    Sanchez, P.2    Domínguez-Vera, J.M.3
  • 15
    • 34547234208 scopus 로고    scopus 로고
    • Biotemplates synthesis of nanoparticle by cage-shaped protein supramolecule, apoferritin
    • Iwahori K., Yamashita I. Biotemplates synthesis of nanoparticle by cage-shaped protein supramolecule, apoferritin. J Clust Sci 2007, 18:358-370.
    • (2007) J Clust Sci , vol.18 , pp. 358-370
    • Iwahori, K.1    Yamashita, I.2
  • 16
    • 84855525439 scopus 로고    scopus 로고
    • Ferroxidase activity of apoferritin is increased in the presence of platinum nanoparticles
    • Sennuga A., van Marwijk J., Whiteley C.G. Ferroxidase activity of apoferritin is increased in the presence of platinum nanoparticles. Nanotechnology 2012, 23:035102.
    • (2012) Nanotechnology , vol.23 , pp. 035102
    • Sennuga, A.1    van Marwijk, J.2    Whiteley, C.G.3
  • 18
    • 0015786494 scopus 로고
    • The catalytic activity of horse spleen apoferritin
    • Bryce C.F.A., Crichton R.R. The catalytic activity of horse spleen apoferritin. Biochem J 1973, 133:301-309.
    • (1973) Biochem J , vol.133 , pp. 301-309
    • Bryce, C.F.A.1    Crichton, R.R.2
  • 19
    • 0017184389 scopus 로고
    • A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
    • Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
    • (1976) Anal Biochem , vol.72 , pp. 248-254
    • Bradford, M.M.1
  • 21
    • 83455197172 scopus 로고    scopus 로고
    • Platinum nanoparticles encapsulated by aminopeptidase: a multifunctional bioinorganic nanohybrid catalyst
    • San H.B., Kim S., Moh S.H., Lee H., Jung D.-Y., Kim K.K. Platinum nanoparticles encapsulated by aminopeptidase: a multifunctional bioinorganic nanohybrid catalyst. Angew Chem Int Edn 2011, 50:1-6.
    • (2011) Angew Chem Int Edn , vol.50 , pp. 1-6
    • San, H.B.1    Kim, S.2    Moh, S.H.3    Lee, H.4    Jung, D.-Y.5    Kim, K.K.6
  • 23
    • 3042596712 scopus 로고    scopus 로고
    • Carbon-supported Pt and Pt Ru nanoparticles as catalysts for a direct methanol fuel cell
    • Liu Z., Ling X.Y., Su X., Lee J.Y. Carbon-supported Pt and Pt Ru nanoparticles as catalysts for a direct methanol fuel cell. J Phys Chem B 2004, 108:8234-8240.
    • (2004) J Phys Chem B , vol.108 , pp. 8234-8240
    • Liu, Z.1    Ling, X.Y.2    Su, X.3    Lee, J.Y.4
  • 24
    • 78650293743 scopus 로고    scopus 로고
    • Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles
    • Fan J., Yin J.-J., Ning B., Wu X., Hu Y., Ferrari M., et al. Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles. Biomaterials 2010, 32:1611-1618.
    • (2010) Biomaterials , vol.32 , pp. 1611-1618
    • Fan, J.1    Yin, J.-J.2    Ning, B.3    Wu, X.4    Hu, Y.5    Ferrari, M.6
  • 25
    • 84855561419 scopus 로고    scopus 로고
    • FTIR analysis of protein structure
    • Gallagher W. FTIR analysis of protein structure. Biochemistry 1997, 392:662-666.
    • (1997) Biochemistry , vol.392 , pp. 662-666
    • Gallagher, W.1
  • 26
    • 0032818805 scopus 로고    scopus 로고
    • FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media
    • Haris P.I., Severcan F. FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J Mol Catal B Enzymatic 1999, 7:207-221.
    • (1999) J Mol Catal B Enzymatic , vol.7 , pp. 207-221
    • Haris, P.I.1    Severcan, F.2
  • 27
    • 0031808808 scopus 로고    scopus 로고
    • Calculated electrostatic gradients in recombinant H-chain ferritin
    • Douglas T., Ripoll D.R. Calculated electrostatic gradients in recombinant H-chain ferritin. Prot Sci 1998, 7:1083-1091.
    • (1998) Prot Sci , vol.7 , pp. 1083-1091
    • Douglas, T.1    Ripoll, D.R.2
  • 28
    • 33646590588 scopus 로고    scopus 로고
    • Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-α delivery
    • Visaria R.K., Griffin R.J., Williams B.W., Ebbini E.S., Paciotti G.F., Song C.W., et al. Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-α delivery. Mol Cancer Ther 2006, 5:1014-1020.
    • (2006) Mol Cancer Ther , vol.5 , pp. 1014-1020
    • Visaria, R.K.1    Griffin, R.J.2    Williams, B.W.3    Ebbini, E.S.4    Paciotti, G.F.5    Song, C.W.6
  • 29
    • 67650663858 scopus 로고    scopus 로고
    • Applications of gold nanoparticles in cancer nanotechnology
    • Cai W., Gao T., Hong H., Sun J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol: Sci Appl 2008, 1:17-32.
    • (2008) Nanotechnol: Sci Appl , vol.1 , pp. 17-32
    • Cai, W.1    Gao, T.2    Hong, H.3    Sun, J.4
  • 30
    • 77649272502 scopus 로고    scopus 로고
    • Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments
    • Eby D.M., Luckarift H.R., Johnson G.R. Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments. Appl Mater Interf 2009, 1:1553-1560.
    • (2009) Appl Mater Interf , vol.1 , pp. 1553-1560
    • Eby, D.M.1    Luckarift, H.R.2    Johnson, G.R.3
  • 31
    • 79957493283 scopus 로고    scopus 로고
    • Studies on manufacturing of topical wound dressings based on nanosilver produced by aqueous molecular solution method
    • Buu N.Q., Chau N.H., Dung N.T.T., Tien N.G. Studies on manufacturing of topical wound dressings based on nanosilver produced by aqueous molecular solution method. J Exp Nanosci 2011, 6:409-421.
    • (2011) J Exp Nanosci , vol.6 , pp. 409-421
    • Buu, N.Q.1    Chau, N.H.2    Dung, N.T.T.3    Tien, N.G.4
  • 32
    • 80053544206 scopus 로고    scopus 로고
    • Insights into catalysis by gold nanoparticles and their support effects through surface science studies of model catalysts
    • Campbell C.T., Sharp J.C., Yao Y.X., Karp E.M., Silbaugh T.L. Insights into catalysis by gold nanoparticles and their support effects through surface science studies of model catalysts. Faraday Discussions 2011, 152:227-239.
    • (2011) Faraday Discussions , vol.152 , pp. 227-239
    • Campbell, C.T.1    Sharp, J.C.2    Yao, Y.X.3    Karp, E.M.4    Silbaugh, T.L.5
  • 33
    • 84873708388 scopus 로고    scopus 로고
    • Room temperature synthesis and catalytic properties of surfactant-modified Ag nanoparticles
    • Li W., Sun C., Hou B., Zhou X. Room temperature synthesis and catalytic properties of surfactant-modified Ag nanoparticles. Int J Spectrosc 2012, 2012:1-7.
    • (2012) Int J Spectrosc , vol.2012 , pp. 1-7
    • Li, W.1    Sun, C.2    Hou, B.3    Zhou, X.4
  • 34
    • 2942558543 scopus 로고    scopus 로고
    • Ferritin reactions: direct identification of the site for the diferric peroxide reaction intermediate
    • Liu X., Thiel E.C. Ferritin reactions: direct identification of the site for the diferric peroxide reaction intermediate. Proc Natl Acad Sci USA 2004, 101:8557-8562.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 8557-8562
    • Liu, X.1    Thiel, E.C.2
  • 35
    • 0344412956 scopus 로고    scopus 로고
    • Core formation in E. coli bacterio-ferritin requires a functional ferroxidase center
    • Baaghil S., Lewin A., Moore G.R., Le Brun N.E. Core formation in E. coli bacterio-ferritin requires a functional ferroxidase center. Biochemistry 2003, 42:14047-14056.
    • (2003) Biochemistry , vol.42 , pp. 14047-14056
    • Baaghil, S.1    Lewin, A.2    Moore, G.R.3    Le Brun, N.E.4
  • 36
    • 0014711422 scopus 로고
    • Ferritin: iron incorporation and iron release
    • Niederer W. Ferritin: iron incorporation and iron release. Cell Mol Life Sci 1970, 26:218-220.
    • (1970) Cell Mol Life Sci , vol.26 , pp. 218-220
    • Niederer, W.1
  • 37
    • 0015270684 scopus 로고
    • The formation of ferritin from apoferritin: kinetics and mechanism of iron uptake
    • Macara I.G., Hoy T.G., Harrison P.M. The formation of ferritin from apoferritin: kinetics and mechanism of iron uptake. Biochem J 1972, 126:151-162.
    • (1972) Biochem J , vol.126 , pp. 151-162
    • Macara, I.G.1    Hoy, T.G.2    Harrison, P.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.