메뉴 건너뛰기




Volumn 60, Issue 6, 2013, Pages 2273-2283

An optimal PID control algorithm for training feedforward neural networks

Author keywords

Feedforward neural networks; linear matrix inequality (LMI); proportional integral and derivative (PID) controller; robust learning

Indexed keywords

FEEDFORWARD NEURAL NETWORKS; LEARNING ALGORITHMS; LINEAR MATRIX INEQUALITIES; OPTIMIZATION; ROBUST CONTROL; THREE TERM CONTROL SYSTEMS; TWO TERM CONTROL SYSTEMS;

EID: 84873696913     PISSN: 02780046     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIE.2012.2194973     Document Type: Article
Times cited : (75)

References (30)
  • 3
    • 84976832431 scopus 로고
    • Methods to speed up error back propagation learning algorithm
    • Dec.
    • D. Sarkar, "Methods to speed up error back propagation learning algorithm," ACM Comput. Surv., vol. l27, no. 4, pp. 519-544, Dec. 1995.
    • (1995) ACM Comput. Surv , vol.127 , Issue.4 , pp. 519-544
    • Sarkar, D.1
  • 4
    • 0026882084 scopus 로고
    • Conjugate gradient algorithm for efficient training of artificial neural networks
    • Jun.
    • C. Charalambous, "Conjugate gradient algorithm for efficient training of artificial neural networks," Proc. Inst. Elect. Eng.-Circuits, Devices, Syst., vol. 139, no. 3, pp. 301-310, Jun. 1992.
    • (1992) Proc. Inst. Elect. Eng.-Circuits, Devices, Syst. , vol.139 , Issue.3 , pp. 301-310
    • Charalambous, C.1
  • 5
    • 0030477946 scopus 로고    scopus 로고
    • Fast second order learning algorithm for feedforward multilayer neural networks and its applications
    • DOI 10.1016/S0893-6080(96)00029-9, PII S0893608096000299
    • S. Osowski, P. Bojarczak, and M. Stodolski, "Fast second order learning algorithm for feedforward multilayer neural network and its applications," Neural Netw., vol. 9, no. 9, pp. 1583-1596, Dec. 1996. (Pubitemid 27055276)
    • (1996) Neural Networks , vol.9 , Issue.9 , pp. 1583-1596
    • Osowski, S.1    Bojarczak, P.2    Stodolski, M.3
  • 7
    • 0036740409 scopus 로고    scopus 로고
    • Neighborhood based Levenberg-Marquardt algorithm for neural network training
    • Sep.
    • G. Lera and M. Pinzolas, "Neighborhood based Levenberg-Marquardt algorithm for neural network training," IEEE Trans. Neural Netw., vol. 13, no. 5, pp. 1200-1203, Sep. 2002.
    • (2002) IEEE Trans. Neural Netw , vol.13 , Issue.5 , pp. 1200-1203
    • Lera, G.1    Pinzolas, M.2
  • 8
    • 33750119752 scopus 로고    scopus 로고
    • On adaptive learning rate that guarantees convergence in feedforward networks
    • DOI 10.1109/TNN.2006.878121
    • L. Behera, S. Kumar, and A. Patnaik, "On adaptive learning rate that guarantees convergence in feedforward networks," IEEE Trans. Neural Netw., vol. 17, no. 5, pp. 1116-1125, Sep. 2006. (Pubitemid 46445171)
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.5 , pp. 1116-1125
    • Behera, L.1    Kumar, S.2    Patnaik, A.3
  • 9
    • 0026841022 scopus 로고
    • A real-time learning algorithm for a multilayered neural netwok based on extended Kalman filter
    • Apr.
    • Y. Iiguni, H. Sakai, and H. Tokumaru, "A real-time learning algorithm for a multilayered neural netwok based on extended Kalman filter," IEEE Trans. Signal Process., vol. 40, no. 4, pp. 959-966, Apr. 1992.
    • (1992) IEEE Trans. Signal Process , vol.40 , Issue.4 , pp. 959-966
    • Iiguni, Y.1    Sakai, H.2    Tokumaru, H.3
  • 10
    • 0035505540 scopus 로고    scopus 로고
    • H∞-learning of layered neural networks
    • Nov.
    • K. Nishiyama and K. Suzuki, "H∞-learning of layered neural networks," IEEE Trans. Neural Netw., vol. 12, no. 6, pp. 1265-1277, Nov. 2001.
    • (2001) IEEE Trans. Neural Netw , vol.12 , Issue.6 , pp. 1265-1277
    • Nishiyama, K.1    Suzuki, K.2
  • 11
    • 0000106040 scopus 로고
    • Universal approximation using radial basis function networks
    • Jun.
    • J. Park and I. W. Sandberg, "Universal approximation using radial basis function networks," Neural Comput., vol. 3, no. 2, pp. 246-257, Jun. 1991.
    • (1991) Neural Comput , vol.3 , Issue.2 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 12
    • 0035302758 scopus 로고    scopus 로고
    • Adaptive control of a class of nonlinear systems with nonlinearly parameterized fuzzy approximators
    • DOI 10.1109/91.919252, PII S1063670601028156
    • H. Han, C. Y. Su, and Y. Stepanenko, "Adaptive control of a class of nonlinear systems with nonlinearly parameterized fuzzy approximators," IEEE Trans. Fuzzy Syst., vol. 9, no. 2, pp. 315-323, Apr. 2001. (Pubitemid 32505587)
    • (2001) IEEE Transactions on Fuzzy Systems , vol.9 , Issue.2 , pp. 315-323
    • Han, H.1    Su, C.-Y.2    Stepanenko, Y.3
  • 13
    • 0028430459 scopus 로고
    • Backpropagation algorithm with momentum
    • P. Sastry, "Backpropagation algorithm with momentum," IEEE Trans. Neural Netw., vol. 5, no. 3, pp. 505-506, 1994.
    • (1994) IEEE Trans. Neural Netw , vol.5 , Issue.3 , pp. 505-506
    • Sastry, P.1
  • 14
    • 53649108664 scopus 로고    scopus 로고
    • Model structure selection using an integrated forward orthogonal search algorithm assisted by squared correlation and mutual information
    • H. L. Wei and S. A. Billings, "Model structure selection using an integrated forward orthogonal search algorithm assisted by squared correlation and mutual information," Int. J. Model., Identif. Control, vol. 3, no. 4, pp. 341-356, 2008.
    • (2008) Int. J. Model., Identif. Control , vol.3 , Issue.4 , pp. 341-356
    • Wei, H.L.1    Billings, S.A.2
  • 15
    • 34548618294 scopus 로고    scopus 로고
    • A new adaptive backpropagation algorithm based on Lyapunov stability theory for neural networks
    • DOI 10.1109/TNN.2006.880360
    • Z. Man, H. R. Wu, S. Liu, and X. Yue, "A new adaptive backpropagation algorithm based on Lyapunov stability theory for neural networks," IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1580-1591, Nov. 2006. (Pubitemid 44824269)
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.6 , pp. 1580-1591
    • Man, Z.1    Wu, H.R.2    Liu, S.3    Yu, X.4
  • 16
    • 67949094310 scopus 로고    scopus 로고
    • Adaptive neural control for strictfeedback nonlinear systems without backstopping
    • J. H. Park, S. H. Kim, and C. J. Moon, "Adaptive neural control for strictfeedback nonlinear systems without backstopping," IEEE Trans. Neural Netw., vol. 20, no. 7, pp. 1204-1209, 2009.
    • (2009) IEEE Trans. Neural Netw , vol.20 , Issue.7 , pp. 1204-1209
    • Park, J.H.1    Kim, S.H.2    Moon, C.J.3
  • 18
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • G. Cybenko, "Approximation by superpositions of a sigmoidal function," Math. Control Signal Syst., vol. 2, no. 4, pp. 303-314, 1989.
    • (1989) Math. Control Signal Syst , vol.2 , Issue.4 , pp. 303-314
    • Cybenko, G.1
  • 19
    • 34547683603 scopus 로고    scopus 로고
    • Convergence of BP algorithm with variable learning rates for FNN training
    • H. Shao andW.Wu, "Convergence of BP algorithm with variable learning rates for FNN training," in Proc. 5th Mexican Int. Conf. Artif. Intell., 2006, pp. 245-252.
    • (2006) Proc. 5th Mexican Int. Conf. Artif. Intell , pp. 245-252
    • Shao, H.1    Wu, W.2
  • 20
    • 84859707082 scopus 로고    scopus 로고
    • Intelligent friction modeling and compensation using neural network approximations
    • Aug.
    • S. Huang and K. Tan, "Intelligent friction modeling and compensation using neural network approximations," IEEE Trans. Ind. Electron., vol. 59, no. 8, pp. 3342-3349, Aug. 2012.
    • (2012) IEEE Trans. Ind. Electron , vol.59 , Issue.8 , pp. 3342-3349
    • Huang, S.1    Tan, K.2
  • 22
    • 0345195977 scopus 로고    scopus 로고
    • Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results
    • DOI 10.1016/S0893-6080(97)00097-X, PII S089360809700097X
    • F. Scarselli and A. C. Tsoi, "Universal approximation using feedforward neural networks: A survey of some existing methods and some new results," Neural Netw., vol. 11, no. 10, pp. 15-37, Jan. 1998. (Pubitemid 28123730)
    • (1998) Neural Networks , vol.11 , Issue.1 , pp. 15-37
    • Scarselli, F.1    Chung Tsoi, Ah.2
  • 23
    • 70349619177 scopus 로고    scopus 로고
    • PID-like neural network nonlinear adaptive control for uncertain multivariable motion control systems
    • Oct.
    • S. Cong and Y. Liang, "PID-like neural network nonlinear adaptive control for uncertain multivariable motion control systems," IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 3872-3879, Oct. 2009.
    • (2009) IEEE Trans. Ind. Electron , vol.56 , Issue.10 , pp. 3872-3879
    • Cong, S.1    Liang, Y.2
  • 24
    • 80053202403 scopus 로고    scopus 로고
    • Advantages of radial basis function networks for dynamic system design
    • Dec.
    • H. Yu, T. Xie, S. Paszczynski, and B. M. Wilamowski, "Advantages of radial basis function networks for dynamic system design," IEEE Trans. Ind. Electron., vol. 58, no. 12, pp. 5438-5450, Dec. 2011.
    • (2011) IEEE Trans. Ind. Electron , vol.58 , Issue.12 , pp. 5438-5450
    • Yu, H.1    Xie, T.2    Paszczynski, S.3    Wilamowski, B.M.4
  • 25
    • 84860120352 scopus 로고    scopus 로고
    • Sliding mode control approach for online learning as applied to type-2 fuzzy neural networks and its experimental evaluation
    • Sep.
    • E. Kayacan, O. Cigdem, and O. Kaynak, "Sliding mode control approach for online learning as applied to type-2 fuzzy neural networks and its experimental evaluation," IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3510-3520, Sep. 2012.
    • (2012) IEEE Trans. Ind. Electron , vol.59 , Issue.9 , pp. 3510-3520
    • Kayacan, E.1    Cigdem, O.2    Kaynak, O.3
  • 26
    • 0029032234 scopus 로고
    • The generalized proportionalintegral-derivative (PID) gradient descent back propagation algorithm
    • R. Vitthal, P. Sunthar, and C. D. Rao, "The generalized proportionalintegral-derivative (PID) gradient descent back propagation algorithm," Neural Netw., vol. 8, no. 4, pp. 563-569, 1995.
    • (1995) Neural Netw , vol.8 , Issue.4 , pp. 563-569
    • Vitthal, R.1    Sunthar, P.2    Rao, C.D.3
  • 27
    • 84856515833 scopus 로고    scopus 로고
    • Extended Kalman filter based learning algorithm for type-2 fuzzy logic systems and its experimental evaluation
    • Nov.
    • M. A. Khanesar, E. Kayacan, M. Teshnehlab, and O. Kaynak, "Extended Kalman filter based learning algorithm for type-2 fuzzy logic systems and its experimental evaluation," IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4443-4455, Nov. 2012.
    • (2012) IEEE Trans. Ind. Electron , vol.59 , Issue.11 , pp. 4443-4455
    • Khanesar, M.A.1    Kayacan, E.2    Teshnehlab, M.3    Kaynak, O.4
  • 28
    • 78349269936 scopus 로고    scopus 로고
    • Type 2 fuzzy neural structure for identification and control of time-varying plants
    • Dec.
    • R. H. Abiyev and O. Kaynak, "Type 2 fuzzy neural structure for identification and control of time-varying plants," IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 4147-4159, Dec. 2010.
    • (2010) IEEE Trans. Ind. Electron , vol.57 , Issue.12 , pp. 4147-4159
    • Abiyev, R.H.1    Kaynak, O.2
  • 29
    • 79960352027 scopus 로고    scopus 로고
    • Application of an adaptive differential evolution algorithm with multiple trial vectors to artificial neural network training
    • Aug.
    • A. Slowik, "Application of an adaptive differential evolution algorithm with multiple trial vectors to artificial neural network training," IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3160-3167, Aug. 2011.
    • (2011) IEEE Trans. Ind. Electron , vol.58 , Issue.8 , pp. 3160-3167
    • Slowik, A.1
  • 30
    • 79960892816 scopus 로고    scopus 로고
    • An H∞ control approach to robust learning of feedforward neural networks
    • Sep.
    • X. J. Jing, "An H∞ control approach to robust learning of feedforward neural networks," Neural Netw., vol. 24, no. 7, pp. 759-766, Sep. 2011.
    • (2011) Neural Netw , vol.24 , Issue.7 , pp. 759-766
    • Jing, X.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.