메뉴 건너뛰기




Volumn 52, Issue 6, 2013, Pages 1122-1130

Structural basis unifying diverse GTP hydrolysis mechanisms

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVE SITE RESIDUES; BIOLOGICAL PROCESS; CONSTITUTIVELY ACTIVES; DIFFERENT MECHANISMS; DYNAMIN; GTP HYDROLYSIS; GTPASE-ACTIVATING PROTEIN; GTPASES; STERIC HINDRANCES; STRUCTURAL BASIS; TRANSITION STATE; UNDERLYING PRINCIPLES;

EID: 84873633688     PISSN: 00062960     EISSN: 15204995     Source Type: Journal    
DOI: 10.1021/bi3014054     Document Type: Article
Times cited : (17)

References (47)
  • 1
    • 0035834388 scopus 로고    scopus 로고
    • The guanine nucleotide-binding switch in three dimensions
    • Vetter, I. R. and Wittinghofer, A. (2001) The guanine nucleotide-binding switch in three dimensions Science 294, 1299-1304
    • (2001) Science , vol.294 , pp. 1299-1304
    • Vetter, I.R.1    Wittinghofer, A.2
  • 2
    • 0031452275 scopus 로고    scopus 로고
    • GEFs, GAPs, GDIs and effectors: Taking a closer (3D) look at the regulation of Ras-related GTP-binding proteins
    • Geyer, M. and Wittinghofer, A. (1997) GEFs, GAPs, GDIs and effectors: Taking a closer (3D) look at the regulation of Ras-related GTP-binding proteins Curr. Opin. Struct. Biol. 7, 786-792
    • (1997) Curr. Opin. Struct. Biol. , vol.7 , pp. 786-792
    • Geyer, M.1    Wittinghofer, A.2
  • 3
    • 27644565612 scopus 로고    scopus 로고
    • Human Lsg1 defines a family of essential GTPases that correlates with the evolution of compartmentalization
    • Reynaud, E. G., Andrade, M. A., Bonneau, F., Ly, T. B., Knop, M., Scheffzek, K., and Pepperkok, R. (2005) Human Lsg1 defines a family of essential GTPases that correlates with the evolution of compartmentalization BMC Biol. 3, 21
    • (2005) BMC Biol. , vol.3 , pp. 21
    • Reynaud, E.G.1    Andrade, M.A.2    Bonneau, F.3    Ly, T.B.4    Knop, M.5    Scheffzek, K.6    Pepperkok, R.7
  • 4
    • 34548443356 scopus 로고    scopus 로고
    • Structural basis of effector regulation and signal termination in heterotrimeric Gα proteins
    • Sprang, S. R., Chen, Z., and Du, X. (2007) Structural basis of effector regulation and signal termination in heterotrimeric Gα proteins Adv. Protein Chem. 74, 1-65
    • (2007) Adv. Protein Chem. , vol.74 , pp. 1-65
    • Sprang, S.R.1    Chen, Z.2    Du, X.3
  • 5
    • 34249018367 scopus 로고    scopus 로고
    • GEFs and GAPs: Critical elements in the control of small G proteins
    • Bos, J. L., Rehmann, H., and Wittinghofer, A. (2007) GEFs and GAPs: Critical elements in the control of small G proteins Cell 129, 865-877
    • (2007) Cell , vol.129 , pp. 865-877
    • Bos, J.L.1    Rehmann, H.2    Wittinghofer, A.3
  • 6
    • 33846969965 scopus 로고    scopus 로고
    • Current knowledge of the large RhoGAP family of proteins
    • Tcherkezian, J. and Lamarche-Vane, N. (2007) Current knowledge of the large RhoGAP family of proteins Biol. Cell 99, 67-86
    • (2007) Biol. Cell , vol.99 , pp. 67-86
    • Tcherkezian, J.1    Lamarche-Vane, N.2
  • 7
    • 35348913710 scopus 로고    scopus 로고
    • Arf GAPs and their interacting proteins
    • Inoue, H. and Randazzo, P. A. (2007) Arf GAPs and their interacting proteins Traffic 8, 1465-1475
    • (2007) Traffic , vol.8 , pp. 1465-1475
    • Inoue, H.1    Randazzo, P.A.2
  • 9
    • 0028027596 scopus 로고
    • GTPase mechanism of G-proteins from the 1.7-Å crystal structure of transducin α-GDP-AIF-4
    • Sondek, J., Lambright, D. G., Noel, J. P., Hamm, H. E., and Sigler, P. B. (1994) GTPase mechanism of G-proteins from the 1.7-Å crystal structure of transducin α-GDP-AIF-4 Nature 372, 276-279
    • (1994) Nature , vol.372 , pp. 276-279
    • Sondek, J.1    Lambright, D.G.2    Noel, J.P.3    Hamm, H.E.4    Sigler, P.B.5
  • 10
    • 0030716497 scopus 로고    scopus 로고
    • Structure at 1.65 Å of RhoA and its GTPase-activating protein in complex with a transition-state analogue
    • Rittinger, K., Walker, P. A., Eccleston, J. F., Smerdon, S. J., and Gamblin, S. J. (1997) Structure at 1.65 Å of RhoA and its GTPase-activating protein in complex with a transition-state analogue Nature 389, 758-762
    • (1997) Nature , vol.389 , pp. 758-762
    • Rittinger, K.1    Walker, P.A.2    Eccleston, J.F.3    Smerdon, S.J.4    Gamblin, S.J.5
  • 11
    • 0037033983 scopus 로고    scopus 로고
    • RanGAP mediates GTP hydrolysis without an arginine finger
    • Seewald, M. J., Korner, C., Wittinghofer, A., and Vetter, I. R. (2002) RanGAP mediates GTP hydrolysis without an arginine finger Nature 415, 662-666
    • (2002) Nature , vol.415 , pp. 662-666
    • Seewald, M.J.1    Korner, C.2    Wittinghofer, A.3    Vetter, I.R.4
  • 12
    • 0028464366 scopus 로고
    • Why have mutagenesis studies not located the general base in ras p21
    • Schweins, T., Langen, R., and Warshel, A. (1994) Why have mutagenesis studies not located the general base in ras p21 Nat. Struct. Biol. 1, 476
    • (1994) Nat. Struct. Biol. , vol.1 , pp. 476
    • Schweins, T.1    Langen, R.2    Warshel, A.3
  • 13
    • 0022471217 scopus 로고
    • Biological and biochemical properties of human rasH genes mutated at codon 61
    • Der, C. J., Finkel, T., and Cooper, G. M. (1986) Biological and biochemical properties of human rasH genes mutated at codon 61 Cell 44, 167-176
    • (1986) Cell , vol.44 , pp. 167-176
    • Der, C.J.1    Finkel, T.2    Cooper, G.M.3
  • 14
    • 16344363783 scopus 로고    scopus 로고
    • Analysis of GTPases carrying hydrophobic amino acid substitutions in lieu of the catalytic glutamine: Implications for GTP hydrolysis
    • Mishra, R., Gara, S. K., Mishra, S., and Prakash, B. (2005) Analysis of GTPases carrying hydrophobic amino acid substitutions in lieu of the catalytic glutamine: Implications for GTP hydrolysis Proteins 59, 332-338
    • (2005) Proteins , vol.59 , pp. 332-338
    • Mishra, R.1    Gara, S.K.2    Mishra, S.3    Prakash, B.4
  • 15
    • 33745520400 scopus 로고    scopus 로고
    • Dimerisation-dependent GTPase reaction of MnmE: How potassium acts as GTPase-activating element
    • Scrima, A. and Wittinghofer, A. (2006) Dimerisation-dependent GTPase reaction of MnmE: How potassium acts as GTPase-activating element EMBO J. 25, 2940-2951
    • (2006) EMBO J. , vol.25 , pp. 2940-2951
    • Scrima, A.1    Wittinghofer, A.2
  • 16
    • 84864280580 scopus 로고    scopus 로고
    • The cation-dependent G-proteins: In a class of their own
    • Ash, M. R., Maher, M. J., Guss, J. M., and Jormakka, M. (2012) The cation-dependent G-proteins: In a class of their own FEBS Lett. 586, 2218-2224
    • (2012) FEBS Lett. , vol.586 , pp. 2218-2224
    • Ash, M.R.1    Maher, M.J.2    Guss, J.M.3    Jormakka, M.4
  • 17
    • 84867325780 scopus 로고    scopus 로고
    • Exploring potassium-dependent GTP hydrolysis in TEES family GTPases
    • Rafay, A., Majumdar, S., and Prakash, B. (2012) Exploring potassium-dependent GTP hydrolysis in TEES family GTPases FEBS Open Bio 2, 173-177
    • (2012) FEBS Open Bio , vol.2 , pp. 173-177
    • Rafay, A.1    Majumdar, S.2    Prakash, B.3
  • 18
    • 33746356908 scopus 로고    scopus 로고
    • TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism
    • Pan, X., Eathiraj, S., Munson, M., and Lambright, D. G. (2006) TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism Nature 442, 303-306
    • (2006) Nature , vol.442 , pp. 303-306
    • Pan, X.1    Eathiraj, S.2    Munson, M.3    Lambright, D.G.4
  • 19
    • 2442669194 scopus 로고    scopus 로고
    • The GTPase-activating protein Rap1GAP uses a catalytic asparagine
    • Daumke, O., Weyand, M., Chakrabarti, P. P., Vetter, I. R., and Wittinghofer, A. (2004) The GTPase-activating protein Rap1GAP uses a catalytic asparagine Nature 429, 197-201
    • (2004) Nature , vol.429 , pp. 197-201
    • Daumke, O.1    Weyand, M.2    Chakrabarti, P.P.3    Vetter, I.R.4    Wittinghofer, A.5
  • 20
    • 41949114173 scopus 로고    scopus 로고
    • The Rap-RapGAP complex: GTP hydrolysis without catalytic glutamine and arginine residues
    • Scrima, A., Thomas, C., Deaconescu, D., and Wittinghofer, A. (2008) The Rap-RapGAP complex: GTP hydrolysis without catalytic glutamine and arginine residues EMBO J. 27, 1145-1153
    • (2008) EMBO J. , vol.27 , pp. 1145-1153
    • Scrima, A.1    Thomas, C.2    Deaconescu, D.3    Wittinghofer, A.4
  • 21
    • 77953023419 scopus 로고    scopus 로고
    • G domain dimerization controls dynamin's assembly-stimulated GTPase activity
    • Chappie, J. S., Acharya, S., Leonard, M., Schmid, S. L., and Dyda, F. (2010) G domain dimerization controls dynamin's assembly-stimulated GTPase activity Nature 465, 435-440
    • (2010) Nature , vol.465 , pp. 435-440
    • Chappie, J.S.1    Acharya, S.2    Leonard, M.3    Schmid, S.L.4    Dyda, F.5
  • 22
    • 0032568655 scopus 로고    scopus 로고
    • SMART, a simple modular architecture research tool: Identification of signaling domains
    • Schultz, J., Milpetz, F., Bork, P., and Ponting, C. (1998) SMART, a simple modular architecture research tool: Identification of signaling domains Proc. Natl. Acad. Sci. U.S.A. 95, 5857-5864
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 5857-5864
    • Schultz, J.1    Milpetz, F.2    Bork, P.3    Ponting, C.4
  • 25
    • 33745634395 scopus 로고    scopus 로고
    • Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences
    • Li, W. and Godzik, A. (2006) Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences Bioinformatics 22, 1658-1659
    • (2006) Bioinformatics , vol.22 , pp. 1658-1659
    • Li, W.1    Godzik, A.2
  • 26
    • 3042666256 scopus 로고    scopus 로고
    • MUSCLE: Multiple sequence alignment with high accuracy and high throughput
    • Edgar, R. (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput Nucleic Acids Res. 32, 1792-1797
    • (2004) Nucleic Acids Res. , vol.32 , pp. 1792-1797
    • Edgar, R.1
  • 28
    • 0344033635 scopus 로고    scopus 로고
    • PDB file parser and structure class implemented in python
    • Hamelryck, T. and Manderick, B. (2003) PDB file parser and structure class implemented in python Bioinformatics 19, 2308-2310
    • (2003) Bioinformatics , vol.19 , pp. 2308-2310
    • Hamelryck, T.1    Manderick, B.2
  • 30
    • 0017586337 scopus 로고
    • Low resolution structure of partially trypsin-degraded polypeptide elongation factor, EF-TU, from Escherichia coli
    • Kabsch, W., Gast, W. H., Schulz, G. E., and Leberman, R. (1977) Low resolution structure of partially trypsin-degraded polypeptide elongation factor, EF-TU, from Escherichia coli J. Mol. Biol. 117, 999-1012
    • (1977) J. Mol. Biol. , vol.117 , pp. 999-1012
    • Kabsch, W.1    Gast, W.H.2    Schulz, G.E.3    Leberman, R.4
  • 32
    • 0043123344 scopus 로고    scopus 로고
    • GTPase catalysis by Ras and other G-proteins: Insights from substrate directed superimposition
    • Kosloff, M. and Selinger, Z. (2003) GTPase catalysis by Ras and other G-proteins: Insights from substrate directed superimposition J. Mol. Biol. 331, 1157-1170
    • (2003) J. Mol. Biol. , vol.331 , pp. 1157-1170
    • Kosloff, M.1    Selinger, Z.2
  • 33
    • 1642483424 scopus 로고    scopus 로고
    • The structural GDP/GTP cycle of Rab11 reveals a novel interface involved in the dynamics of recycling endosomes
    • Pasqualato, S., Senic-Matuglia, F., Renault, L., Goud, B., Salamero, J., and Cherfils, J. (2004) The structural GDP/GTP cycle of Rab11 reveals a novel interface involved in the dynamics of recycling endosomes J. Biol. Chem. 279, 11480-11488
    • (2004) J. Biol. Chem. , vol.279 , pp. 11480-11488
    • Pasqualato, S.1    Senic-Matuglia, F.2    Renault, L.3    Goud, B.4    Salamero, J.5    Cherfils, J.6
  • 34
    • 33646701199 scopus 로고    scopus 로고
    • The crystal structure of the small GTPase Rab11b reveals critical differences relative to the Rab11a isoform
    • Scapin, S., Carneiro, F., Alves, A., Medrano, F., Guimarães, B., and Zanchin, N. (2006) The crystal structure of the small GTPase Rab11b reveals critical differences relative to the Rab11a isoform J. Struct. Biol. 154, 260-268
    • (2006) J. Struct. Biol. , vol.154 , pp. 260-268
    • Scapin, S.1    Carneiro, F.2    Alves, A.3    Medrano, F.4    Guimarães, B.5    Zanchin, N.6
  • 35
    • 0041735420 scopus 로고    scopus 로고
    • Essential role of histidine 84 in elongation factor Tu for the chemical step of GTP hydrolysis on the ribosome
    • Daviter, T., Wieden, H., and Rodnina, M. (2003) Essential role of histidine 84 in elongation factor Tu for the chemical step of GTP hydrolysis on the ribosome J. Mol. Biol. 332, 689-699
    • (2003) J. Mol. Biol. , vol.332 , pp. 689-699
    • Daviter, T.1    Wieden, H.2    Rodnina, M.3
  • 36
    • 0029061952 scopus 로고
    • Relevance of histidine-84 in the elongation factor Tu GTPase activity and in poly(Phe) synthesis: Its substitution by glutamine and alanine
    • Scarano, G., Krab, I., Bocchini, V., and Parmeggiani, A. (1995) Relevance of histidine-84 in the elongation factor Tu GTPase activity and in poly(Phe) synthesis: Its substitution by glutamine and alanine FEBS Lett. 365, 214-218
    • (1995) FEBS Lett. , vol.365 , pp. 214-218
    • Scarano, G.1    Krab, I.2    Bocchini, V.3    Parmeggiani, A.4
  • 37
    • 54949133640 scopus 로고    scopus 로고
    • Mechanism of the chemical step for the guanosine triphosphate (GTP) hydrolysis catalyzed by elongation factor Tu
    • Grigorenko, B., Shadrina, M., Topol, I., Collins, J., and Nemukhin, A. (2008) Mechanism of the chemical step for the guanosine triphosphate (GTP) hydrolysis catalyzed by elongation factor Tu Biochim. Biophys. Acta 1784, 1908-1917
    • (2008) Biochim. Biophys. Acta , vol.1784 , pp. 1908-1917
    • Grigorenko, B.1    Shadrina, M.2    Topol, I.3    Collins, J.4    Nemukhin, A.5
  • 38
    • 0035907234 scopus 로고    scopus 로고
    • Conformational change of elongation factor Tu (EF-Tu) induced by antibiotic binding. Crystal structure of the complex between EF-Tu.GDP and aurodox
    • Vogeley, L., Palm, G., Mesters, J., and Hilgenfeld, R. (2001) Conformational change of elongation factor Tu (EF-Tu) induced by antibiotic binding. Crystal structure of the complex between EF-Tu.GDP and aurodox J. Biol. Chem. 276, 17149-17155
    • (2001) J. Biol. Chem. , vol.276 , pp. 17149-17155
    • Vogeley, L.1    Palm, G.2    Mesters, J.3    Hilgenfeld, R.4
  • 40
    • 77951297777 scopus 로고    scopus 로고
    • Atomic mutagenesis reveals A2660 of 23S ribosomal RNA as key to EF-G GTPase activation
    • Clementi, N., Chirkova, A., Puffer, B., Micura, R., and Polacek, N. (2010) Atomic mutagenesis reveals A2660 of 23S ribosomal RNA as key to EF-G GTPase activation Nat. Chem. Biol. 6, 344-351
    • (2010) Nat. Chem. Biol. , vol.6 , pp. 344-351
    • Clementi, N.1    Chirkova, A.2    Puffer, B.3    Micura, R.4    Polacek, N.5
  • 41
    • 78149302861 scopus 로고    scopus 로고
    • The Mechanism for Activation of GTP Hydrolysis on the Ribosome
    • Voorhees, R. M., Schmeing, T. M., Kelley, A. C., and Ramakrishnan, V. (2010) The Mechanism for Activation of GTP Hydrolysis on the Ribosome Science 330, 835-838
    • (2010) Science , vol.330 , pp. 835-838
    • Voorhees, R.M.1    Schmeing, T.M.2    Kelley, A.C.3    Ramakrishnan, V.4
  • 42
    • 84862908487 scopus 로고    scopus 로고
    • Crystal structure of release factor RF3 trapped in the GTP state on a rotated conformation of the ribosome
    • Zhou, J., Lancaster, L., Trakhanov, S., and Noller, H. F. (2012) Crystal structure of release factor RF3 trapped in the GTP state on a rotated conformation of the ribosome RNA 18, 230-240
    • (2012) RNA , vol.18 , pp. 230-240
    • Zhou, J.1    Lancaster, L.2    Trakhanov, S.3    Noller, H.F.4
  • 43
    • 0034703718 scopus 로고    scopus 로고
    • X-ray structures of the universal translation initiation factor IF2/eIF5B: Conformational changes on GDP and GTP binding
    • Roll-Mecak, A., Cao, C., Dever, T. E., and Burley, S. K. (2000) X-ray structures of the universal translation initiation factor IF2/eIF5B: Conformational changes on GDP and GTP binding Cell 103, 781-792
    • (2000) Cell , vol.103 , pp. 781-792
    • Roll-Mecak, A.1    Cao, C.2    Dever, T.E.3    Burley, S.K.4
  • 44
    • 0037136560 scopus 로고    scopus 로고
    • Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat
    • Bi, X., Corpina, R. A., and Goldberg, J. (2002) Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat Nature 419, 271-277
    • (2002) Nature , vol.419 , pp. 271-277
    • Bi, X.1    Corpina, R.A.2    Goldberg, J.3
  • 45
    • 33644772427 scopus 로고    scopus 로고
    • How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP
    • Ghosh, A., Praefcke, G. J. K., Renault, L., Wittinghofer, A., and Herrmann, C. (2006) How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP Nature 440, 101-104
    • (2006) Nature , vol.440 , pp. 101-104
    • Ghosh, A.1    Praefcke, G.J.K.2    Renault, L.3    Wittinghofer, A.4    Herrmann, C.5
  • 47
    • 0036295212 scopus 로고    scopus 로고
    • Classification and evolution of P-loop GTPases and related ATPases
    • Leipe, D. D., Wolf, Y. I., Koonin, E. V., and Aravind, L. (2002) Classification and evolution of P-loop GTPases and related ATPases J. Mol. Biol. 317, 41-72
    • (2002) J. Mol. Biol. , vol.317 , pp. 41-72
    • Leipe, D.D.1    Wolf, Y.I.2    Koonin, E.V.3    Aravind, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.