메뉴 건너뛰기




Volumn , Issue , 2011, Pages 247-258

Extracting interpretable features for early classification on time series

Author keywords

[No Author keywords available]

Indexed keywords

ACCIDENT PREVENTION; DATA MINING; INDUSTRIAL MANAGEMENT; MEDICAL INFORMATICS; TIME SERIES;

EID: 84873606971     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972818.22     Document Type: Conference Paper
Times cited : (170)

References (16)
  • 4
    • 18744389061 scopus 로고    scopus 로고
    • Boosting interval based literals: Variable length and early classification
    • J. J. R. Diez, C. A. González, and H. Boström. Boosting interval based literals: variable length and early classification. Intell. Data Anal., 5(3):245-262, 2001.
    • (2001) Intell. Data Anal. , vol.5 , Issue.3 , pp. 245-262
    • Diez, J.J.R.1    González, C.A.2    Boström, H.3
  • 5
    • 0035181483 scopus 로고    scopus 로고
    • Toward the early diagnosis of neonatal sepsis and sepsis-like illness using novel heart rate analysis
    • M. P. Griffin and J. R. Moorman. Toward the early diagnosis of neonatal sepsis and sepsis-like illness using novel heart rate analysis. PEDIATRICS, 107(1):97-104, 2001.
    • (2001) Pediatrics , vol.107 , Issue.1 , pp. 97-104
    • Griffin, M.P.1    Moorman, J.R.2
  • 7
    • 0002776254 scopus 로고    scopus 로고
    • Integrating classification and association rule mining
    • B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In KDD '98.
    • KDD '98
    • Liu, B.1    Hsu, W.2    Ma, Y.3
  • 8
    • 17444422535 scopus 로고    scopus 로고
    • Kernel density classification and boosting: An l2 analysis
    • M. D. Marzio and C. C. Taylor. Kernel density classification and boosting: an l2 analysis. Statistics and Computing, 15(2):113-123, 2005.
    • (2005) Statistics and Computing , vol.15 , Issue.2 , pp. 113-123
    • Marzio, M.D.1    Taylor, C.C.2
  • 10
    • 33749408249 scopus 로고    scopus 로고
    • Making time-series classification more accurate using learned constraints
    • C. A. Ratanamahatana and E. J. Keogh. Making time-series classification more accurate using learned constraints. In SDM '04.
    • SDM '04
    • Ratanamahatana, C.A.1    Keogh, E.J.2
  • 14
    • 81055156693 scopus 로고    scopus 로고
    • A brief survey on sequence classification
    • June ACM Press
    • Z. Xing, J. Pei, and E. Keogh. A brief survey on sequence classification. ACM SIGKDD Explorations, Volume 12, Issue 1, pages 40-48, June 2010, ACM Press.
    • (2010) ACM SIGKDD Explorations , vol.12 , Issue.1 , pp. 40-48
    • Xing, Z.1    Pei, J.2    Keogh, E.3
  • 15
    • 85077489606 scopus 로고    scopus 로고
    • Early classification on time series: A nearest neighbor approach
    • Z. Xing, J. Pei, and P. S. Yu. Early classification on time series: A nearest neighbor approach. In IJCAI'09.
    • IJCAI'09
    • Xing, Z.1    Pei, J.2    Yu, P.S.3
  • 16
    • 84880104538 scopus 로고    scopus 로고
    • Time series shapelets: A new primitive for data mining
    • L. Ye and E. Keogh. Time series shapelets: A new primitive for data mining. In KDD '09.
    • KDD '09
    • Ye, L.1    Keogh, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.