메뉴 건너뛰기




Volumn 257, Issue , 2013, Pages 17-35

Explicit finite element implementation of an improved three dimensional constitutive model for shape memory alloys

Author keywords

Constitutive model; Numerical implementation; Phase transformation; Shape memory alloy

Indexed keywords

EXPLICIT FINITE ELEMENTS; EXPLICIT SCHEME; ISOTROPIC MATERIALS; MASS SCALING; MODEL EQUATIONS; MULTI-ELEMENT; NUMERICAL IMPLEMENTATION; NUMERICAL INTEGRATIONS; RATE INDEPENDENTS; SIMULATION TIME; SINGLE ELEMENT; THERMO-MECHANICAL; THERMO-MECHANICAL LOADING; THREE-DIMENSIONAL CALCULATIONS; TRANSFORMATION STRAIN; USER CALIBRATION;

EID: 84873601129     PISSN: 00457825     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cma.2012.12.021     Document Type: Article
Times cited : (63)

References (41)
  • 1
    • 35248853906 scopus 로고    scopus 로고
    • A three-dimensional phenomenological model for martensite reorientation in shape memory alloys
    • Panico M., Brinson L.C. A three-dimensional phenomenological model for martensite reorientation in shape memory alloys. J. Mech. Phys. Solids 2007, 55(11):2491.
    • (2007) J. Mech. Phys. Solids , vol.55 , Issue.11 , pp. 2491
    • Panico, M.1    Brinson, L.C.2
  • 2
    • 77951962599 scopus 로고    scopus 로고
    • A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings
    • Arghavani J., Auricchio F., Naghdabadi R., Reali A., Sohrabpour S. A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings. Int. J. Plasticity 2010, 26(7):976.
    • (2010) Int. J. Plasticity , vol.26 , Issue.7 , pp. 976
    • Arghavani, J.1    Auricchio, F.2    Naghdabadi, R.3    Reali, A.4    Sohrabpour, S.5
  • 3
    • 77955768879 scopus 로고    scopus 로고
    • A 3D finite strain phenomenological constitutive model for shape memory alloys considering martensite reorientation
    • Arghavani J., Auricchio F., Naghdabadi R., Reali A., Sohrabpour S. A 3D finite strain phenomenological constitutive model for shape memory alloys considering martensite reorientation. Continuum Mech. Thermodyn. 2010, 22(5):345.
    • (2010) Continuum Mech. Thermodyn. , vol.22 , Issue.5 , pp. 345
    • Arghavani, J.1    Auricchio, F.2    Naghdabadi, R.3    Reali, A.4    Sohrabpour, S.5
  • 4
    • 79953902513 scopus 로고    scopus 로고
    • A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions
    • Saleeb A.F., Padula S.A., Kumar A. A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions. Int. J. Plasticity 2011, 27(5):655.
    • (2011) Int. J. Plasticity , vol.27 , Issue.5 , pp. 655
    • Saleeb, A.F.1    Padula, S.A.2    Kumar, A.3
  • 5
    • 79955703519 scopus 로고    scopus 로고
    • Constitutive model for shape memory alloys including phase transformation, martensitic reorientation and twins accommodation
    • Chemisky Y., Duval A., Patoor E., Ben Zineb T. Constitutive model for shape memory alloys including phase transformation, martensitic reorientation and twins accommodation. Mech. Mater. 2011, 43(7):361.
    • (2011) Mech. Mater. , vol.43 , Issue.7 , pp. 361
    • Chemisky, Y.1    Duval, A.2    Patoor, E.3    Ben Zineb, T.4
  • 6
    • 84885384885 scopus 로고    scopus 로고
    • Modeling of shape memory alloys and application to porous materials
    • Northwestern University, Evanston, IL
    • Panico M. Modeling of shape memory alloys and application to porous materials. Mechanical Engineering 2008, Northwestern University, Evanston, IL.
    • (2008) Mechanical Engineering
    • Panico, M.1
  • 7
    • 51249118494 scopus 로고    scopus 로고
    • Computational modeling of porous shape memory alloys
    • Panico M., Brinson L.C. Computational modeling of porous shape memory alloys. Int. J. Solids Struct. 2008, 45(21):5613.
    • (2008) Int. J. Solids Struct. , vol.45 , Issue.21 , pp. 5613
    • Panico, M.1    Brinson, L.C.2
  • 8
    • 84873582545 scopus 로고    scopus 로고
    • Abaqus, Analysis User's Manual, Dassault Systemes of America Corp, Woodland Hills, CA.
    • Abaqus, Analysis User's Manual, 2010, Dassault Systemes of America Corp, Woodland Hills, CA.
    • (2010)
  • 9
    • 84873593521 scopus 로고
    • Introduction to the mechanics of a continuous medium
    • Prentice-Hall, Englewood Cliffs, NJ
    • Malvern L.E. Introduction to the mechanics of a continuous medium. Prentice-Hall series in engineering of the physical sciences 1969, vol. xii. Prentice-Hall, Englewood Cliffs, NJ.
    • (1969) Prentice-Hall series in engineering of the physical sciences , vol.12
    • Malvern, L.E.1
  • 11
    • 0032658898 scopus 로고    scopus 로고
    • Microstructure in the cubic to monoclinic transition in titanium-nickel shape memory alloys
    • Hane K.F., Shield T.W. Microstructure in the cubic to monoclinic transition in titanium-nickel shape memory alloys. Acta Materialia 1999, 47(9):2603.
    • (1999) Acta Materialia , vol.47 , Issue.9 , pp. 2603
    • Hane, K.F.1    Shield, T.W.2
  • 12
    • 0142221576 scopus 로고    scopus 로고
    • Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect
    • Oxford University Press, Oxford, New York
    • Bhattacharya K. Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford series on materials modelling 2003, vol. 2. Oxford University Press, Oxford, New York.
    • (2003) Oxford series on materials modelling , vol.2
    • Bhattacharya, K.1
  • 14
    • 34548211428 scopus 로고    scopus 로고
    • A micromechanics-inspired constitutive model for shape-memory alloys
    • Sadjadpour A., Bhattacharya K. A micromechanics-inspired constitutive model for shape-memory alloys. Smart Mater. Struct. 2007, 16(5):1751.
    • (2007) Smart Mater. Struct. , vol.16 , Issue.5 , pp. 1751
    • Sadjadpour, A.1    Bhattacharya, K.2
  • 15
    • 84873599239 scopus 로고    scopus 로고
    • A constitutive model for shape-memory alloys that accounts for initiation, reorientation, and saturation
    • Submitted for publication.
    • A. Kelly, K. Bhattacharya, A constitutive model for shape-memory alloys that accounts for initiation, reorientation, and saturation, J. Mech. Physics Solids, Submitted for publication.
    • J. Mech. Physics Solids
    • Kelly, A.1    Bhattacharya, K.2
  • 16
    • 80053614662 scopus 로고    scopus 로고
    • Thermomechanical coupling in shape memory alloys under cyclic loadings: experimental analysis and constitutive modeling
    • Morin C., Moumni Z., Zaki W. Thermomechanical coupling in shape memory alloys under cyclic loadings: experimental analysis and constitutive modeling. Int. J. Plasticity 2011, 27(12):1959.
    • (2011) Int. J. Plasticity , vol.27 , Issue.12 , pp. 1959
    • Morin, C.1    Moumni, Z.2    Zaki, W.3
  • 17
    • 79953901898 scopus 로고    scopus 로고
    • A constitutive model for shape memory alloys accounting for thermomechanical coupling
    • Morin C., Moumni Z., Zaki W. A constitutive model for shape memory alloys accounting for thermomechanical coupling. Int. J. Plasticity 2011, 27(5):748.
    • (2011) Int. J. Plasticity , vol.27 , Issue.5 , pp. 748
    • Morin, C.1    Moumni, Z.2    Zaki, W.3
  • 18
    • 36448996151 scopus 로고    scopus 로고
    • Phase diagram kinetics for shape memory alloys: a robust finite element implementation
    • Gao X., Qiao R., Brinson L.C. Phase diagram kinetics for shape memory alloys: a robust finite element implementation. Smart Mater. Struct. 2007, 16(6):2102.
    • (2007) Smart Mater. Struct. , vol.16 , Issue.6 , pp. 2102
    • Gao, X.1    Qiao, R.2    Brinson, L.C.3
  • 19
    • 0031191742 scopus 로고    scopus 로고
    • Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior
    • Auricchio F., Taylor R.L., Lubliner J. Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior. Comput. Methods Appl. Mech. Engrg. 1997, 146(3-4):281.
    • (1997) Comput. Methods Appl. Mech. Engrg. , vol.146 , Issue.3-4 , pp. 281
    • Auricchio, F.1    Taylor, R.L.2    Lubliner, J.3
  • 20
    • 0031126082 scopus 로고    scopus 로고
    • Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior
    • Auricchio F., Taylor R.L. Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior. Comput. Methods Appl. Mech. Engrg. 1997, 143(1-2):175.
    • (1997) Comput. Methods Appl. Mech. Engrg. , vol.143 , Issue.1-2 , pp. 175
    • Auricchio, F.1    Taylor, R.L.2
  • 22
    • 77955511700 scopus 로고    scopus 로고
    • A finite-deformation-based phenomenological theory for shape-memory alloys
    • Thamburaja P. A finite-deformation-based phenomenological theory for shape-memory alloys. Int. J. Plasticity 2010, 26(8):1195.
    • (2010) Int. J. Plasticity , vol.26 , Issue.8 , pp. 1195
    • Thamburaja, P.1
  • 23
    • 58749117196 scopus 로고    scopus 로고
    • A macroscopic constitutive model for shape-memory alloys: theory and finite-element simulations
    • Thamburaja P., Nikabdullah N. A macroscopic constitutive model for shape-memory alloys: theory and finite-element simulations. Comput. Methods Appl. Mech. Engrg. 2009, 198(9-12):1074.
    • (2009) Comput. Methods Appl. Mech. Engrg. , vol.198 , Issue.9-12 , pp. 1074
    • Thamburaja, P.1    Nikabdullah, N.2
  • 24
    • 34548858166 scopus 로고    scopus 로고
    • An isotropic-plasticity-based constitutive model for martensitic reorientation and shape-memory effect in shape-memory alloys
    • Pan H., Thamburaja P., Chau F.S. An isotropic-plasticity-based constitutive model for martensitic reorientation and shape-memory effect in shape-memory alloys. Int. J. Solids Struct. 2007, 44(22-23):7688.
    • (2007) Int. J. Solids Struct. , vol.44 , Issue.22-23 , pp. 7688
    • Pan, H.1    Thamburaja, P.2    Chau, F.S.3
  • 25
    • 33845888822 scopus 로고    scopus 로고
    • Multi-axial behavior of shape-memory alloys undergoing martensitic reorientation and detwinning
    • Pan H., Thamburaja P., Chau F.S. Multi-axial behavior of shape-memory alloys undergoing martensitic reorientation and detwinning. Int. J. Plasticity 2007, 23(4):711.
    • (2007) Int. J. Plasticity , vol.23 , Issue.4 , pp. 711
    • Pan, H.1    Thamburaja, P.2    Chau, F.S.3
  • 26
    • 13844254192 scopus 로고    scopus 로고
    • Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys
    • Thamburaja P. Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys. J. Mech. Phys. Solids 2005, 53(4):825.
    • (2005) J. Mech. Phys. Solids , vol.53 , Issue.4 , pp. 825
    • Thamburaja, P.1
  • 28
    • 0031209666 scopus 로고    scopus 로고
    • A finite-strain finite element model for the pseudoelastic behavior of shape memory alloys
    • Masud A., Panahandeh M., Aurrichio F. A finite-strain finite element model for the pseudoelastic behavior of shape memory alloys. Comput. Methods Appl. Mech. Engrg. 1997, 148(1-2):23.
    • (1997) Comput. Methods Appl. Mech. Engrg. , vol.148 , Issue.1-2 , pp. 23
    • Masud, A.1    Panahandeh, M.2    Aurrichio, F.3
  • 31
    • 30244465412 scopus 로고
    • Criterion for the action of applied stress in the martensitic transformation
    • Patel J.R., Cohen M. Criterion for the action of applied stress in the martensitic transformation. Acta Metall. 1953, 1(5):531.
    • (1953) Acta Metall. , vol.1 , Issue.5 , pp. 531
    • Patel, J.R.1    Cohen, M.2
  • 34
    • 84873589908 scopus 로고    scopus 로고
    • saes-getters. 4/23/2012]; Available from: .
    • saes-getters. 4/23/2012]; Available from: http://www.saesgetters.com/default.aspx?idPage=1391.
  • 35
    • 34247593471 scopus 로고    scopus 로고
    • Stress-induced martensitic phase transformation in thin sheets of Nitinol
    • Daly S., Ravichandran G., Bhattacharya K. Stress-induced martensitic phase transformation in thin sheets of Nitinol. Acta Mater. 2007, 55(10):3593.
    • (2007) Acta Mater. , vol.55 , Issue.10 , pp. 3593
    • Daly, S.1    Ravichandran, G.2    Bhattacharya, K.3
  • 36
    • 77956611231 scopus 로고    scopus 로고
    • Use of a Ni60Ti shape memory alloy for active jet engine chevron application: I. Thermomechanical characterization
    • Hartl D.J., Lagoudas D.C., Calkins F.T., Mabe J.H. Use of a Ni60Ti shape memory alloy for active jet engine chevron application: I. Thermomechanical characterization. Smart Mater. Struct. 2010, 19(1).
    • (2010) Smart Mater. Struct. , vol.19 , Issue.1
    • Hartl, D.J.1    Lagoudas, D.C.2    Calkins, F.T.3    Mabe, J.H.4
  • 37
    • 84859559187 scopus 로고    scopus 로고
    • Analysis of shape memory alloy components using beam, shell, and continuum finite elements
    • Adaptive Structures and Intelligent Systems
    • D. Hartl, T. Zimmerman, M. Dilligan, J. Mabe, F. Calkins, Analysis of shape memory alloy components using beam, shell, and continuum finite elements, in: Proceedings of the Asme Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 2010, vol. 1, 2010, p. 295.
    • (2010) Proceedings of the Asme Conference on Smart Materials , vol.1 , pp. 295
    • Hartl, D.1    Zimmerman, T.2    Dilligan, M.3    Mabe, J.4    Calkins, F.5
  • 38
    • 33750161640 scopus 로고    scopus 로고
    • Newton methods for nonlinear problems: affine invariance and adaptive algorithms
    • Springer, Berlin, New York
    • Deuflhard P. Newton methods for nonlinear problems: affine invariance and adaptive algorithms. Springer series in computational mathematics 2004, vol. xii. Springer, Berlin, New York.
    • (2004) Springer series in computational mathematics , vol.12
    • Deuflhard, P.1
  • 39
    • 0036567878 scopus 로고    scopus 로고
    • Three-dimensional constitutive model for shape memory alloys based on microplane model
    • Brocca M., Brinson L.C., Bazant Z. Three-dimensional constitutive model for shape memory alloys based on microplane model. J. Mech. Phys. Solids 2002, 50(5):1051.
    • (2002) J. Mech. Phys. Solids , vol.50 , Issue.5 , pp. 1051
    • Brocca, M.1    Brinson, L.C.2    Bazant, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.