-
1
-
-
33751531805
-
Aggregate features and AdaBoost for music classification
-
J. Bergstra, N. Casagrande, D. Erhan, D. Eck, and B. Kegl. Aggregate features and AdaBoost for music classification. Machine Learning, 65:473-484, 2006.
-
(2006)
Machine Learning
, vol.65
, pp. 473-484
-
-
Bergstra, J.1
Casagrande, N.2
Erhan, D.3
Eck, D.4
Kegl, B.5
-
2
-
-
57049179026
-
Autotagger: A model for predicting social tags from acoustic features on large music databases
-
T. Bertin-Mahieux, D. Eck, F. Maillet, and P. Lamere. Autotagger: A model for predicting social tags from acoustic features on large music databases. Journal of New Music Research, 37(2):115-135, 2008.
-
(2008)
Journal of New Music Research
, vol.37
, Issue.2
, pp. 115-135
-
-
Bertin-Mahieux, T.1
Eck, D.2
Maillet, F.3
Lamere, P.4
-
3
-
-
84873657155
-
A music classification method based on timbral features
-
Kobe, Japan, October
-
Thibault Langlois and Gonalo Marques. A music classification method based on timbral features. In ISMIR, Kobe, Japan, October 2009.
-
(2009)
ISMIR
-
-
Langlois, T.1
Marques, G.2
-
4
-
-
84892457941
-
Input-agreement: A new mechanism for data collection using human computation games
-
Edith L. M. Law and Luis von Ahn. Input-agreement: A new mechanism for data collection using human computation games. In CHI, pages 1197-1206, 2009.
-
(2009)
CHI
, pp. 1197-1206
-
-
Law, E.L.M.1
Von Ahn, L.2
-
6
-
-
0009985115
-
Mel frequency cepstral coefficients for music modeling
-
Plymouth, Mass. October
-
Beth Logan. Mel frequency cepstral coefficients for music modeling. In ISMIR, Plymouth, Mass., October 2000.
-
(2000)
ISMIR
-
-
Logan, B.1
-
7
-
-
57049157739
-
A web-based game for collecting music metadata
-
M. Mandel and D. Ellis. A web-based game for collecting music metadata. J. New Music Research, 37(2):151-165, 2008.
-
(2008)
J. New Music Research
, vol.37
, Issue.2
, pp. 151-165
-
-
Mandel, M.1
Ellis, D.2
-
8
-
-
84873528643
-
Song-level features and support vector machines for music classification
-
London, UK, September
-
Michael I. Mandel and Daniel P.W. Ellis. Song-level features and support vector machines for music classification. In ISMIR, pages 594-599, London, UK, September 2005.
-
(2005)
ISMIR
, pp. 594-599
-
-
Mandel, M.I.1
Ellis, D.P.W.2
-
9
-
-
0038133939
-
Distance measures for speech recognition, psychological and instrumental
-
P. Mermelstein. Distance measures for speech recognition, psychological and instrumental. Pattern Recognition and Artificial Intelligence, pages 374-388, 1976.
-
(1976)
Pattern Recognition and Artificial Intelligence
, pp. 374-388
-
-
Mermelstein, P.1
-
10
-
-
84873668627
-
Music genre classification using locality preserving non-negative tensor factorization and sparse representations
-
Kobe, Japan, October
-
Yannis Panagakis, Constantine Kotropoulos, and Gonzalo R. Arce. Music genre classification using locality preserving non-negative tensor factorization and sparse representations. In ISMIR, Kobe, Japan, October 2009.
-
(2009)
ISMIR
-
-
Panagakis, Y.1
Kotropoulos, C.2
Arce, G.R.3
-
12
-
-
0010053023
-
Automatic musical genre classification of audio, signals
-
Bloomington, Indiana, October
-
G. Tzanetakis, G. Essl, and P. Cook. Automatic musical genre classification of audio signals. In ISMIR, Bloomington, Indiana, October 2001.
-
(2001)
ISMIR
-
-
Tzanetakis, G.1
Essl, G.2
Cook, P.3
-
14
-
-
84873531705
-
Finding an optimal segmentation for audio genre classification
-
London, UK, October
-
Kris West and Stephen Cox. Finding an optimal segmentation for audio genre classification. In ISMIR, London, UK, October 2005.
-
(2005)
ISMIR
-
-
West, K.1
Cox, S.2
|