-
2
-
-
33749257884
-
Inferencewith the universum
-
J. Weston,R. Collobert,F. Sinz,L. Bottou, and V. Vapnik, "Inferencewith the Universum," Proc. ICML,2006, pp. 1009-1016.
-
(2006)
Proc. ICML
, pp. 1009-1016
-
-
Weston, J.1
Collobert, R.2
Sinz, F.3
Bottou, L.4
Vapnik, V.5
-
3
-
-
80051551588
-
Practical Conditions forEffectiveness of the Universum Learning
-
Aug
-
V. Cherkassky, S. Dhar, and W. Dai, "Practical Conditions forEffectiveness of the Universum Learning,", IEEE Transactions onNeural Networks,vol.22, no. 8, pp. 1241-1255, Aug 2011.
-
(2011)
IEEE Transactions OnNeural Networks
, vol.22
, Issue.8
, pp. 1241-1255
-
-
Cherkassky, V.1
Dhar, S.2
Dai, W.3
-
4
-
-
84873597143
-
Empirical study of the universum SVMLearning for high-dimensional data
-
V. Cherkassky, and W. Dai, "Empirical Study of the Universum SVMLearning for High-Dimensional Data," in Proc. ICANN, 2009.
-
(2009)
Proc. ICANN
-
-
Cherkassky, V.1
Dai, W.2
-
5
-
-
85162053956
-
An analysis ofinference with the universum
-
F. Sinz, O. Chapelle, A. Agarwal, and B. Schölkopf, "An analysis ofinference with the Universum," In Proc. of 21st Annual Conferenceon Neural Information Processing Systems, 2008, pp. 1-8.
-
(2008)
Proc. of 21st Annual Conferenceon Neural Information Processing Systems
, pp. 1-8
-
-
Sinz, F.1
Chapelle, O.2
Agarwal, A.3
Schölkopf, B.4
-
6
-
-
84873592965
-
On universum-support vectormachines
-
T. T. Gao, Z.X Yang, L. Jing, "On Universum-Support VectorMachines",The Eighth International Symposium on OperationsResearch and Its Applications, China, 2009, pp. 473-480.
-
(2009)
The Eighth International Symposium on OperationsResearch and Its Applications, China
, pp. 473-480
-
-
Gao, T.T.1
Yang, Z.X.2
Jing, L.3
-
7
-
-
52649111664
-
Semi-supervisedclassification with universum
-
D. Zhang, J. Wang, F. Wang, and C. Zhang, "Semi- supervisedclassification with Universum," Proceedings of the 8th SIAMConference on Data Mining (SDM), 2008, pp. 323-333.
-
(2008)
Proceedings of the 8th SIAMConference on Data Mining (SDM
, pp. 323-333
-
-
Zhang, D.1
Wang, J.2
Wang, F.3
Zhang, C.4
-
8
-
-
78650664607
-
Selecting informative universum sample forsemi-supervised learning
-
S. Chen and C. Zhang, "Selecting informative Universum sample forsemi-supervised learning," in Proc. Int. Joint Conf. Artif. Intell.,2009, pp. 1016-1021.
-
(2009)
Proc. Int. Joint Conf. Artif. Intell
, pp. 1016-1021
-
-
Chen, S.1
Zhang, C.2
-
9
-
-
56349103629
-
Gender classification of human facesusing inference through contradictions
-
Jun
-
X. Bai and V. Cherkassky, "Gender classification of human facesusing inference through contradictions," in Proc. Int. Joint Conf.Neural Netw., Hong Kong, Jun. 2008, pp. 746-750.
-
(2008)
Proc. Int. Joint Conf.Neural Netw., Hong Kong
, pp. 746-750
-
-
Bai, X.1
Cherkassky, V.2
-
10
-
-
84870298735
-
UBoost: Boosting with theuniversum
-
C. Shen, P. Wang, F. Shen, H. Wang, "UBoost: Boosting with theUniversum", IEEE Transaction on Pattern Analysis and MachineIntelligence, 2011.
-
(2011)
IEEE Transaction on Pattern Analysis and MachineIntelligence
-
-
Shen, C.1
Wang, P.2
Shen, F.3
Wang, H.4
-
12
-
-
50549087624
-
Cost-sensitive learning vs.sampling: Which is best for handling unbalanced classes withunequal error costs?
-
G. M. Weiss, K. McCarthy, B. Zabar,"Cost-Sensitive Learning vs.Sampling: Which is Best for Handling Unbalanced Classes withUnequal Error Costs?", DMIN 2007,pp. 35-41.
-
(2007)
DMIN
, pp. 35-41
-
-
Weiss, G.M.1
McCarthy, K.2
Zabar, B.3
-
15
-
-
0036161029
-
Support vector machines forclassification in nonstandard situations
-
Y. Lin, Y. Lee, and G. Wahba, "Support vector machines forclassification in nonstandard situations", Machine Learning, vol.46,pp. 191-202, 2002.
-
(2002)
Machine Learning
, vol.46
, pp. 191-202
-
-
Lin, Y.1
Lee, Y.2
Wahba, G.3
-
16
-
-
84873588277
-
-
UniverSVM. [WWW page]
-
UniverSVM. [WWW page].URL: http://mloss.org/software/view/19/.
-
-
-
-
17
-
-
84873604784
-
-
Cost Sensitive Univerum Software. [WWW page]. URL
-
Cost Sensitive Univerum Software. [WWW page]. URL:http://www.ece.umn.edu/ users/cherkass/predictive-learning/SOFTWARES.html.
-
-
-
-
18
-
-
80051549276
-
Simple method for interpretation of highdimensional nonlinear SVM classification models
-
Las Vegas, NV, Jul
-
V. Cherkassky and S. Dhar, "Simple method for interpretation of highdimensional nonlinear SVM classification models," in Proc. Int.Conf. Data Min., Las Vegas, NV, Jul. 2010, pp. 267-272.
-
(2010)
Proc. Int.Conf. Data Min.
, pp. 267-272
-
-
Cherkassky, V.1
Dhar, S.2
-
20
-
-
84873605658
-
-
sam roweis: data. [WWW page]
-
S. Roweis, sam roweis: data. [WWW page]. URLhttp://www.cs.nyu.edu/ ~roweis/data.html.
-
-
-
Roweis, S.1
-
21
-
-
84873585435
-
-
The German Traffic Sign Recognition Benchmark. [WWW page].URL
-
The German Traffic Sign Recognition Benchmark. [WWW page].URL http://benchmark.ini.rub.de/?section=gtsrb&subsection= dataset#resultanalysis.
-
-
-
|