메뉴 건너뛰기




Volumn 30, Issue , 2013, Pages 1-20

Production modelling for holistic production control

Author keywords

Black box modelling; Holistic production control; Neural networks; Production performance indicators

Indexed keywords

NEURAL NETWORKS; PRODUCTION CONTROL;

EID: 84873406678     PISSN: 1569190X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.simpat.2012.07.010     Document Type: Review
Times cited : (18)

References (49)
  • 1
    • 0031362361 scopus 로고    scopus 로고
    • Plantwide control design procedure
    • M.L. Luyben, B.D. Tyreus, W.L. Luyben, Plantwide control design procedure, AIChE Journal 43 (1997) 3161-3174. (Pubitemid 127481073)
    • (1997) AIChE Journal , vol.43 , Issue.12 , pp. 3161-3174
    • Luyben, M.L.1    Tyreus, B.D.2    Luyben, W.L.3
  • 3
    • 34548299325 scopus 로고    scopus 로고
    • Manufacturing plant control challenges and issues
    • DOI 10.1016/j.conengprac.2007.05.005, PII S096706610700113X, Special Issue on Manufacturing Plant Control: Challenges and Issues INCOM 2004
    • G. Morel, P. Valckenaers, J.-M. Faure, C.E. Pereira, C. Diedrich, Manufacturing plant control challenges and issues, Control Engineering Practice 15 (2007) 1321-1331. (Pubitemid 47338235)
    • (2007) Control Engineering Practice , vol.15 , Issue.11 , pp. 1321-1331
    • Morel, G.1    Valckenaers, P.2    Faure, J.-M.3    Pereira, C.E.4    Diedrich, C.5
  • 5
    • 34249286255 scopus 로고    scopus 로고
    • Data mining in design of products and production systems
    • A. Kusiak, Data mining in design of products and production systems, in: IFAC Annual Reviews in Control, pp. 147-156.
    • IFAC Annual Reviews in Control , pp. 147-156
    • Kusiak, A.1
  • 7
    • 33846805549 scopus 로고    scopus 로고
    • Feedback control for optimal process operation
    • DOI 10.1016/j.jprocont.2006.10.011, PII S0959152406001326
    • S. Engell, Feedback control for optimal process operation, Journal of Process Control 17 (2007) 203-219. (Pubitemid 46205320)
    • (2007) Journal of Process Control , vol.17 , Issue.3 , pp. 203-219
    • Engell, S.1
  • 9
    • 66749125845 scopus 로고    scopus 로고
    • Optimizing process economic performance using model predictive control
    • L. Magni, D. Raimondo, F. Allgöwer (Eds.), Springer, Berlin, Heidelberg
    • J. Rawlings, R. Amrit, Optimizing process economic performance using model predictive control, in: L. Magni, D. Raimondo, F. Allgöwer (Eds.), Nonlinear Model Predictive Control, Lecture Notes in Control and Information Sciences, vol. 384, Springer, Berlin, Heidelberg, 2009, pp. 119-138.
    • (2009) Nonlinear Model Predictive Control, Lecture Notes in Control and Information Sciences , vol.384 , pp. 119-138
    • Rawlings, J.1    Amrit, R.2
  • 10
  • 11
    • 2342632555 scopus 로고    scopus 로고
    • Retrospective on optimization
    • DOI 10.1016/j.compchemeng.2003.11.003, PII S0098135403003089
    • L. Biegler, I. Grossmann, Retrospective on optimization, Computers & Chemical Engineering 28 (8) (2004) 1169-1192. (Pubitemid 38609076)
    • (2004) Computers and Chemical Engineering , vol.28 , Issue.8 , pp. 1169-1192
    • Biegler, L.T.1    Grossmann, I.E.2
  • 14
    • 84873404918 scopus 로고    scopus 로고
    • (accessed 23.08.12)
    • IBM, Business Monitor, 2012 (accessed 23.08.12).
    • (2012) IBM Business Monitor
  • 16
    • 84871533888 scopus 로고    scopus 로고
    • Asset management KPIs, validated, analysed and predicted utilising self learning hybrid modelling in real time
    • J. Mathew, J. Kennedy, L. Ma, A. Tan, D. Anderson (Eds.), Springer, London
    • D. Sands, G. MacElroy, Asset management KPIs, validated, analysed and predicted utilising self learning hybrid modelling in real time, in: J. Mathew, J. Kennedy, L. Ma, A. Tan, D. Anderson (Eds.), Engineering Asset Management, Springer, London, 2006, pp. 757-766.
    • (2006) Engineering Asset Management , pp. 757-766
    • Sands, D.1    MacElroy, G.2
  • 17
    • 84873412365 scopus 로고    scopus 로고
    • Neural networks and regressive KPI metamodels for business corporate management: Methodology and case study
    • P. Taticchi (Ed.), Springer, Berlin, Heidelberg
    • R. Revetria, F. Tonelli, Neural networks and regressive KPI metamodels for business corporate management: methodology and case study, in: P. Taticchi (Ed.), Business Performance Measurement and Management, Springer, Berlin, Heidelberg, 2010, pp. 343-356.
    • (2010) Business Performance Measurement and Management , pp. 343-356
    • Revetria, R.1    Tonelli, F.2
  • 20
    • 33747876682 scopus 로고    scopus 로고
    • Nonlinear empirical modeling techniques
    • DOI 10.1016/j.compchemeng.2006.05.028, PII S0098135406001396, Papers from Chemical Process Control VII CPC VII
    • R.K. Pearson, Nonlinear empirical modeling techniques, Computers & Chemical Engineering 30 (2006) 1514-1528. (Pubitemid 44292261)
    • (2006) Computers and Chemical Engineering , vol.30 , Issue.10-12 , pp. 1514-1528
    • Pearson, R.K.1
  • 21
    • 29244441730 scopus 로고    scopus 로고
    • Dynamic systems identification with gaussian processes, mathematical and computer modelling of dynamical systems: Methods
    • J. Kocijan, A. Girard, B. Banko, R. Murray-Smith, Dynamic systems identification with gaussian processes, mathematical and computer modelling of dynamical systems: methods, Tools and Applications in Engineering and Related Sciences 11 (2005) 411-424.
    • (2005) Tools and Applications in Engineering and Related Sciences , vol.11 , pp. 411-424
    • Kocijan, J.1    Girard, A.2    Banko, B.3    Murray-Smith, R.4
  • 23
    • 0020183045 scopus 로고
    • Robust-resistant spectrum estimation
    • R. Martin, D. Thomson, Robust-resistant spectrum estimation, Proceedings of the IEEE 70 (1982) 1097-1115.
    • (1982) Proceedings of the IEEE , vol.70 , pp. 1097-1115
    • Martin, R.1    Thomson, D.2
  • 24
    • 2442589699 scopus 로고    scopus 로고
    • On-line outlier detection and data cleaning
    • DOI 10.1016/j.compchemeng.2004.01.009, PII S0098135404000249
    • H. Liu, S. Shah, W. Jiang, On-line outlier detection and data cleaning, Computers & Chemical Engineering 28 (2004) 1635-1647. (Pubitemid 38638287)
    • (2004) Computers and Chemical Engineering , vol.28 , Issue.9 , pp. 1635-1647
    • Liu, H.1    Shah, S.2    Jiang, W.3
  • 26
    • 0036207952 scopus 로고    scopus 로고
    • Outliers in process modeling and identification
    • DOI 10.1109/87.974338, PII S1063653602003263
    • R. Pearson, Outliers in process modeling and identification, IEEE Transactions on Control Systems Technology 10 (2002) 55-63. (Pubitemid 34277992)
    • (2002) IEEE Transactions on Control Systems Technology , vol.10 , Issue.1 , pp. 55-63
    • Pearson, R.K.1
  • 27
    • 24144451277 scopus 로고    scopus 로고
    • A review of performance measurement: Towards performance management
    • DOI 10.1016/j.compind.2005.03.001, PII S0166361505000412
    • P. Folan, J. Browne, A review of performance measurement: towards performance management, Computers in Industry 56 (2005) 663-680. (Pubitemid 41230988)
    • (2005) Computers in Industry , vol.56 , Issue.7 , pp. 663-680
    • Folan, P.1    Browne, J.2
  • 29
    • 34547376690 scopus 로고    scopus 로고
    • Variable selection in industrial datasets using pareto genetic programming
    • T. Yu, R. Riolo, B. Worzel (Eds.), The Kluwer International Series in Engineering and Computer Science, Springer
    • G. Smits, A. Kordon, K. Vladislavleva, E. Jordaan, M. Kotanchek, Variable selection in industrial datasets using pareto genetic programming, in: T. Yu, R. Riolo, B. Worzel (Eds.), Genetic Programming Theory and Practice III, The Kluwer International Series in Engineering and Computer Science, vol. 9, Springer, 2006, pp. 79-92.
    • (2006) Genetic Programming Theory and Practice III , vol.9 , pp. 79-92
    • Smits, G.1    Kordon, A.2    Vladislavleva, K.3    Jordaan, E.4    Kotanchek, M.5
  • 33
    • 71249138499 scopus 로고    scopus 로고
    • Input selection in learning systems: A brief review of some important issues and recent developments
    • C. Hu, F. Wan, Input selection in learning systems: a brief review of some important issues and recent developments, in: IEEE International Conference on Fuzzy Systems, pp. 530-535.
    • IEEE International Conference on Fuzzy Systems , pp. 530-535
    • Hu, C.1    Wan, F.2
  • 35
    • 61749084755 scopus 로고    scopus 로고
    • Selection of input variables for data driven models: An average shifted histogram partial mutual information estimator approach
    • T. Fernando, H. Maier, G. Dandy, Selection of input variables for data driven models: an average shifted histogram partial mutual information estimator approach, Journal of Hydrology 367 (2009) 165-176.
    • (2009) Journal of Hydrology , vol.367 , pp. 165-176
    • Fernando, T.1    Maier, H.2    Dandy, G.3
  • 36
    • 0027335201 scopus 로고
    • New method for identifying orders of input-output models for nonlinear dynamic systems
    • X. He, H. Asada, A new method for identifying orders of input-output models for nonlinear dynamic systems, in: American Control Conference, 1993, pp. 2520-2523. (Pubitemid 23705466)
    • (1993) American Control Conference , pp. 2520-2523
    • He Xiangdong1    Asada Haruhiko2
  • 39
    • 0037862841 scopus 로고    scopus 로고
    • A comprehensive review for industrial applicability of artificial neural networks
    • M. Meireles, P. Almeida, M. Simoes, A comprehensive review for industrial applicability of artificial neural networks, IEEE Transactions on Industrial Electronics 50 (2003) 585-601.
    • (2003) IEEE Transactions on Industrial Electronics , vol.50 , pp. 585-601
    • Meireles, M.1    Almeida, P.2    Simoes, M.3
  • 46
    • 0041802770 scopus 로고    scopus 로고
    • A survey of industrial model predictive control technology
    • DOI 10.1016/S0967-0661(02)00186-7, PII S0967066102001867
    • S.J. Qin, T.A. Badgwell, A survey of industrial model predictive control technology, Control Engineering Practice 11 (2003) 733-764. (Pubitemid 36906334)
    • (2003) Control Engineering Practice , vol.11 , Issue.7 , pp. 733-764
    • Qin, S.J.1    Badgwell, T.A.2
  • 48
    • 80052631623 scopus 로고    scopus 로고
    • Considerations on nonlinear model predictive control techniques
    • F. Manenti, Considerations on nonlinear model predictive control techniques, Computers & Chemical Engineering 35 (2011) 2491-2509.
    • (2011) Computers & Chemical Engineering , vol.35 , pp. 2491-2509
    • Manenti, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.