-
1
-
-
0039468458
-
Anti-Hadamard Matrices, Coin Weighing, Threshold Gates, and Indecomposable Hypergraphs
-
N. Alon and V. H. Vu. Anti-Hadamard Matrices, Coin Weighing, Threshold Gates, and Indecomposable Hypergraphs. Journal of Combinatorial Theory, Series A, 79(1):133-160, 1997.
-
(1997)
Journal of Combinatorial Theory, Series A
, vol.79
, Issue.1
, pp. 133-160
-
-
Alon, N.1
Vu, V.H.2
-
2
-
-
84862596887
-
Near-optimal solutions for the Chow Parameters Problem and low-weight approximation of halfspaces
-
A. De, I. Diakonikolas, V. Feldman, and R. Servedio. Near-optimal solutions for the Chow Parameters Problem and low-weight approximation of halfspaces. STOC, 2012.
-
(2012)
STOC
-
-
De, A.1
Diakonikolas, I.2
Feldman, V.3
Servedio, R.4
-
5
-
-
0022624923
-
Linear function neurons: Structure and training
-
S. Hampson and D. Volper. Linear function neurons: structure and training. Biological Cybernetics, 53:203-217, 1986.
-
(1986)
Biological Cybernetics
, vol.53
, pp. 203-217
-
-
Hampson, S.1
Volper, D.2
-
6
-
-
0000420294
-
On the size of weights for threshold gates
-
J. Håstad. On the size of weights for threshold gates. SIAM Journal on Discrete Mathematics, 7(3):484-492, 1994.
-
(1994)
SIAM Journal on Discrete Mathematics
, vol.7
, Issue.3
, pp. 484-492
-
-
Håstad, J.1
-
7
-
-
0011996276
-
-
Technical Report Technical Report 87-012, Dept. of Computer Science, University of Chicago
-
J. Hong. On connectionist models. Technical Report Technical Report 87-012, Dept. of Computer Science, University of Chicago, 1987.
-
(1987)
On Connectionist Models
-
-
Hong, J.1
-
8
-
-
0001384677
-
How fast can a threshold gate learn?
-
Computational Learning Theory and Natural Learning Systems: MIT Press
-
W. Maass and G. Turan. How fast can a threshold gate learn? In Computational Learning Theory and Natural Learning Systems: Volume I: Constraints and Prospects, pages 381-414. MIT Press, 1994.
-
(1994)
Constraints and Prospects
, vol.1
, pp. 381-414
-
-
Maass, W.1
Turan, G.2
-
14
-
-
0013368052
-
Slicing the hypercube
-
Keith Walker, editor, Surveys in Combinatorics 1993
-
M. Saks. Slicing the hypercube. In Keith Walker, editor, Surveys in Combinatorics 1993, pages 211-257. London Mathematical Society Lecture Note Series 187, 1993.
-
(1993)
London Mathematical Society Lecture Note Series
, vol.187
, pp. 211-257
-
-
Saks, M.1
-
16
-
-
34249103612
-
Every linear threshold function has a low-weight approximator
-
R. Servedio. Every linear threshold function has a low-weight approximator. Comput. Complexity, 16(2):180-209, 2007.
-
(2007)
Comput. Complexity
, vol.16
, Issue.2
, pp. 180-209
-
-
Servedio, R.1
-
17
-
-
84972576948
-
A combinatorial problem; stability and order for models and theories in infinitary languages
-
S. Shelah. A combinatorial problem; stability and order for models and theories in infinitary languages. Pacific J. Math., 41:247-261, 1972.
-
(1972)
Pacific J. Math.
, vol.41
, pp. 247-261
-
-
Shelah, S.1
|