메뉴 건너뛰기




Volumn 20, Issue 1, 2013, Pages 86-97

A Note on Sample Size and Solution Propriety for Confirmatory Factor Analytic Models

Author keywords

confirmatory factor analysis; latent variable reliability; sample size; structural equation modeling; Swain correction

Indexed keywords

CONFIRMATORY FACTOR ANALYSIS; LATENT VARIABLE; LATENT VARIABLE MODELING; MEASUREMENT MODEL; MODEL ESTIMATION; SAMPLE SIZES; SMALL SAMPLE SIZE; STRUCTURAL EQUATION MODELING;

EID: 84873386790     PISSN: 10705511     EISSN: None     Source Type: Journal    
DOI: 10.1080/10705511.2013.742388     Document Type: Article
Times cited : (52)

References (44)
  • 1
    • 34147096911 scopus 로고
    • The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis
    • Anderson, J. C. and Gerbing, D. W. 1984. The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis. Psychometrika, 49: 155-173.
    • (1984) Psychometrika , vol.49 , pp. 155-173
    • Anderson, J.C.1    Gerbing, D.W.2
  • 2
    • 76449086387 scopus 로고    scopus 로고
    • The use of Monte Carlo studies in structural equation modeling research
    • In: Hancock G. R., Mueller R. O., editors Greenwich, CT, Greenwich, CT,: Information Age
    • Bandalos, D. L. 2006. "The use of Monte Carlo studies in structural equation modeling research.". In Structural equation modeling: A second course Edited by: Hancock, G. R. and Mueller, R. O. Greenwich, CT: Information Age.
    • (2006) Structural equation modeling: A second course
    • Bandalos, D.L.1
  • 3
    • 0025397298 scopus 로고
    • Comparative fit indexes in structural models
    • Bentler, P. M. 1990. Comparative fit indexes in structural models. Psychological Bulletin, 107: 238-246.
    • (1990) Psychological Bulletin , vol.107 , pp. 238-246
    • Bentler, P.M.1
  • 5
    • 0003010184 scopus 로고
    • The robustness of LISREL against small sample sizes in factor analysis models
    • In: Joreskog K. G., Wold H., editors Amsterdam, Netherlands, Amsterdam,: North-Holland
    • Boomsma, A. 1982. "The robustness of LISREL against small sample sizes in factor analysis models.". In Systems under indirect observation: Causality, structure, prediction Edited by: Joreskog, K. G. and Wold, H. 149-285. Amsterdam, Netherlands: North-Holland.
    • (1982) Systems under indirect observation: Causality, structure, prediction , pp. 149-285
    • Boomsma, A.1
  • 6
    • 0001342316 scopus 로고
    • Nonconvergence, improper solutions, and starting values in LISREL maximum likelihood estimation
    • Boomsma, A. 1985. Nonconvergence, improper solutions, and starting values in LISREL maximum likelihood estimation. Psychometrika, 50: 229-242.
    • (1985) Psychometrika , vol.50 , pp. 229-242
    • Boomsma, A.1
  • 7
    • 0025391120 scopus 로고
    • Applications of covariance structure modeling in psychology: Cause for concern?
    • Breckler, S. J. 1990. Applications of covariance structure modeling in psychology: Cause for concern?. Psychological Bulletin, 107: 260-273.
    • (1990) Psychological Bulletin , vol.107 , pp. 260-273
    • Breckler, S.J.1
  • 8
    • 0001233581 scopus 로고
    • Alternative ways of assessing model fit
    • In: Bollen K. A., Long J. S., editors Newbury Park, CA, Newbury Park, CA,: Sage
    • Browne, M. W. and Cudeck, R. 1993. "Alternative ways of assessing model fit.". In Testing structural equation models Edited by: Bollen, K. A. and Long, J. S. 136-162. Newbury Park, CA: Sage.
    • (1993) Testing structural equation models , pp. 136-162
    • Browne, M.W.1    Cudeck, R.2
  • 9
    • 0036321402 scopus 로고    scopus 로고
    • The noncentral chi-square distribution in misspecified structural equation models: Finite sample results from a Monte Carlo simulation
    • Curran, P. J., Bollen, K. A., Paxton, P., Kirby, J. and Chen, F. 2002. The noncentral chi-square distribution in misspecified structural equation models: Finite sample results from a Monte Carlo simulation. Multivariate Behavioral Research, 37: 1-36.
    • (2002) Multivariate Behavioral Research , vol.37 , pp. 1-36
    • Curran, P.J.1    Bollen, K.A.2    Paxton, P.3    Kirby, J.4    Chen, F.5
  • 10
    • 34147166571 scopus 로고
    • Effects of estimation methods, number of indicators per factor, and improper solutions on structural equation modeling fit indices
    • Ding, L., Velicer, W. F. and Harlow, L. L. 1995. Effects of estimation methods, number of indicators per factor, and improper solutions on structural equation modeling fit indices. Structural Equation Modeling, 2: 119-144.
    • (1995) Structural Equation Modeling , vol.2 , pp. 119-144
    • Ding, L.1    Velicer, W.F.2    Harlow, L.L.3
  • 11
    • 22144444619 scopus 로고    scopus 로고
    • Effects of sample size, estimation methods, and model specification on structural equation modeling fit indexes
    • Fan, X., Thompson, B. and Wang, L. 1999. Effects of sample size, estimation methods, and model specification on structural equation modeling fit indexes. Structural Equation Modeling, 6: 56-83.
    • (1999) Structural Equation Modeling , vol.6 , pp. 56-83
    • Fan, X.1    Thompson, B.2    Wang, L.3
  • 12
    • 0010033533 scopus 로고    scopus 로고
    • Performance of modified test statistics in covariance and correlation structure analysis under conditions of multivariate normality
    • Fouladi, R. T. 2000. Performance of modified test statistics in covariance and correlation structure analysis under conditions of multivariate normality. Structural Equation Modeling, 7: 356-410.
    • (2000) Structural Equation Modeling , vol.7 , pp. 356-410
    • Fouladi, R.T.1
  • 13
    • 33745683380 scopus 로고    scopus 로고
    • Measurement model quality, sample size, and solution propriety in confirmatory factor analysis
    • Gagné, P. and Hancock, G. R. 2006. Measurement model quality, sample size, and solution propriety in confirmatory factor analysis. Multivariate Behavioral Research, 41: 65-83.
    • (2006) Multivariate Behavioral Research , vol.41 , pp. 65-83
    • Gagné, P.1    Hancock, G.R.2
  • 14
    • 0001760242 scopus 로고
    • The effects of sampling error and model characteristics on parameter estimation for maximum likelihood confirmatory factor analysis
    • Gerbing, D. W. and Anderson, J. C. 1985. The effects of sampling error and model characteristics on parameter estimation for maximum likelihood confirmatory factor analysis. Multivariate Behavioral Research, 20: 255-271.
    • (1985) Multivariate Behavioral Research , vol.20 , pp. 255-271
    • Gerbing, D.W.1    Anderson, J.C.2
  • 15
    • 0004125042 scopus 로고
    • 2nd ed., Hillsdale, NJ, Hillsdale, NJ,: Erlbaum
    • Gorsuch, R. L. 1983. Factor analysis, 2nd ed. Hillsdale, NJ: Erlbaum.
    • (1983) Factor analysis
    • Gorsuch, R.L.1
  • 16
    • 0010039213 scopus 로고    scopus 로고
    • Rethinking construct reliability within latent variable systems
    • In: Cudeck R., du Toit S., Sörbom D., editors Lincolnwood, IL, Lincolnwood, IL,: Scientific Software International
    • Hancock, G. R. and Mueller, R. O. 2001. "Rethinking construct reliability within latent variable systems.". In Structural equation modeling: Present and future. A festschrift in honor of Karl Jöreskog Edited by: Cudeck, R., du Toit, S. and Sörbom, D. 195-216. Lincolnwood, IL: Scientific Software International.
    • (2001) Structural equation modeling: Present and future. A festschrift in honor of Karl Jöreskog , pp. 195-216
    • Hancock, G.R.1    Mueller, R.O.2
  • 17
    • 17444400603 scopus 로고    scopus 로고
    • The growth of structural equation modeling: 1994-2001
    • Hershberger, S. L. 2003. The growth of structural equation modeling: 1994-2001. Structural Equation Modeling, 10: 35-46.
    • (2003) Structural Equation Modeling , vol.10 , pp. 35-46
    • Hershberger, S.L.1
  • 18
    • 61449163071 scopus 로고    scopus 로고
    • Small-sample robust estimators of noncentrality-based and incremental model fit
    • Herzog, W. and Boomsma, A. 2009. Small-sample robust estimators of noncentrality-based and incremental model fit. Structural Equation Modeling, 16: 1-27.
    • (2009) Structural Equation Modeling , vol.16 , pp. 1-27
    • Herzog, W.1    Boomsma, A.2
  • 19
    • 34548066774 scopus 로고    scopus 로고
    • The model-size effect on traditional and modified tests of covariance structures
    • Herzog, W., Boomsma, A. and Reinecke, S. 2007. The model-size effect on traditional and modified tests of covariance structures. Structural Equation Modeling, 14: 361-390.
    • (2007) Structural Equation Modeling , vol.14 , pp. 361-390
    • Herzog, W.1    Boomsma, A.2    Reinecke, S.3
  • 20
    • 0000238145 scopus 로고    scopus 로고
    • Sample size and the number of parameter estimates in maximum likelihood confirmatory factor analysis: A Monte Carlo investigation
    • Jackson, D. L. 2001. Sample size and the number of parameter estimates in maximum likelihood confirmatory factor analysis: A Monte Carlo investigation. Structural Equation Modeling, 8: 205-223.
    • (2001) Structural Equation Modeling , vol.8 , pp. 205-223
    • Jackson, D.L.1
  • 21
    • 18744363439 scopus 로고    scopus 로고
    • Revisiting sample size and the number of parameter estimates: Some support for the N:q hypothesis
    • Jackson, D. L. 2003. Revisiting sample size and the number of parameter estimates: Some support for the N:q hypothesis. Structural Equation Modeling, 10: 128-141.
    • (2003) Structural Equation Modeling , vol.10 , pp. 128-141
    • Jackson, D.L.1
  • 22
    • 33847293669 scopus 로고    scopus 로고
    • The effect of the number of observations per parameter in misspecified confirmatory factor analytic models
    • Jackson, D. L. 2007. The effect of the number of observations per parameter in misspecified confirmatory factor analytic models. Structural Equation Modeling, 14: 48-76.
    • (2007) Structural Equation Modeling , vol.14 , pp. 48-76
    • Jackson, D.L.1
  • 23
    • 33947414695 scopus 로고    scopus 로고
    • Effect of the number of variables on measures of fit in structural equation modeling
    • Kenny, D. A. and McCoach, D. B. 2003. Effect of the number of variables on measures of fit in structural equation modeling. Structural Equation Modeling, 10: 333-351.
    • (2003) Structural Equation Modeling , vol.10 , pp. 333-351
    • Kenny, D.A.1    McCoach, D.B.2
  • 24
    • 85084586270 scopus 로고    scopus 로고
    • Data modeling: Structural equation modeling
    • In: Green J. L., Camilli G., Elmore P. B., editors Mahwah, NJ, Mahwah, NJ,: Erlbaum
    • Kim, K. H. and Bentler, P. M. 2006. "Data modeling: Structural equation modeling.". In Handbook of complementary methods in education research Edited by: Green, J. L., Camilli, G. and Elmore, P. B. 161-175. Mahwah, NJ: Erlbaum.
    • (2006) Handbook of complementary methods in education research , pp. 161-175
    • Kim, K.H.1    Bentler, P.M.2
  • 27
    • 0013118140 scopus 로고    scopus 로고
    • Power analysis and determination of sample size for covariance structure modeling
    • MacCallum, R. C., Browne, M. W. and Sugawara, H. M. 1996. Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1: 130-149.
    • (1996) Psychological Methods , vol.1 , pp. 130-149
    • MacCallum, R.C.1    Browne, M.W.2    Sugawara, H.M.3
  • 30
    • 3142717451 scopus 로고
    • Goodness-of-fit indexes in confirmatory factor analysis: The effect of sample size
    • Marsh, H. W., Balla, J. R. and McDonald, R. P. 1988. Goodness-of-fit indexes in confirmatory factor analysis: The effect of sample size. Psychological Bulletin, 103: 391-410.
    • (1988) Psychological Bulletin , vol.103 , pp. 391-410
    • Marsh, H.W.1    Balla, J.R.2    McDonald, R.P.3
  • 31
    • 0032221781 scopus 로고    scopus 로고
    • Is more ever too much? The number of indicators per factor in confirmatory factor analysis
    • Marsh, H. W., Hau, K.-T., Balla, J. R. and Grayson, D. 1998. Is more ever too much? The number of indicators per factor in confirmatory factor analysis. Multivariate Behavioral Research, 33: 181-220.
    • (1998) Multivariate Behavioral Research , vol.33 , pp. 181-220
    • Marsh, H.W.1    Hau, K.-T.2    Balla, J.R.3    Grayson, D.4
  • 32
    • 31344447082 scopus 로고    scopus 로고
    • Goodness of fit in structural equation models
    • In: Maydeu-Olivares A., McArdle J. J., editors Mahwah, NJ, Mahwah, NJ,: Erlbaum
    • Marsh, H. W., Hau, K.-T. and Grayson, D. 2005. "Goodness of fit in structural equation models.". In Contemporary psychometrics: A festschrift for Roderick P. McDonald Edited by: Maydeu-Olivares, A. and McArdle, J. J. 275-340. Mahwah, NJ: Erlbaum.
    • (2005) Contemporary psychometrics: A festschrift for Roderick P. McDonald , pp. 275-340
    • Marsh, H.W.1    Hau, K.-T.2    Grayson, D.3
  • 33
    • 18744362214 scopus 로고    scopus 로고
    • The use of structural equation modeling in counseling psychology research
    • Martens, M. P. 2005. The use of structural equation modeling in counseling psychology research. The Counseling Psychologist, 33: 269-298.
    • (2005) The Counseling Psychologist , vol.33 , pp. 269-298
    • Martens, M.P.1
  • 36
    • 11144327159 scopus 로고    scopus 로고
    • Evaluating small sample approaches for model test statistics in structural equation modeling
    • Nevitt, J. and Hancock, G. R. 2004. Evaluating small sample approaches for model test statistics in structural equation modeling. Multivariate Behavioral Research, 39: 439-478.
    • (2004) Multivariate Behavioral Research , vol.39 , pp. 439-478
    • Nevitt, J.1    Hancock, G.R.2
  • 37
    • 84970415414 scopus 로고
    • Structural equation models: Empirical identification, Heywood cases, and related problems
    • Rindskopf, D. 1984. Structural equation models: Empirical identification, Heywood cases, and related problems. Sociological Methods and Research, 13: 109-119.
    • (1984) Sociological Methods and Research , vol.13 , pp. 109-119
    • Rindskopf, D.1
  • 38
    • 0034412441 scopus 로고    scopus 로고
    • Design and analysis of Monte Carlo experiments: Attacking the conventional wisdom
    • Skrondal, A. 2000. Design and analysis of Monte Carlo experiments: Attacking the conventional wisdom. Multivariate Behavioral Research, 35: 137-167.
    • (2000) Multivariate Behavioral Research , vol.35 , pp. 137-167
    • Skrondal, A.1
  • 39
    • 0003616491 scopus 로고    scopus 로고
    • Statistically based tests for the number of common factors
    • Paper presented at the annual meeting of the Psychometric Society, Iowa City, IA, June
    • Steiger, J. H. and Lind, J. M. Statistically based tests for the number of common factors. Paper presented at the annual meeting of the Psychometric Society. Iowa City, IA. June.
    • Steiger, J.H.1    Lind, J.M.2
  • 41
    • 0000142125 scopus 로고
    • "How big is big enough?": Sample size and goodness of fit in structural equation models with latent variables
    • Tanaka, J. S. 1987. "How big is big enough?": Sample size and goodness of fit in structural equation models with latent variables. Child Development, 58: 134-146.
    • (1987) Child Development , vol.58 , pp. 134-146
    • Tanaka, J.S.1
  • 42
    • 0009861829 scopus 로고    scopus 로고
    • On the growth of structural equation modeling in psychological journals
    • Tremblay, P. F. and Gardner, R. C. 1996. On the growth of structural equation modeling in psychological journals. Structural Equation Modeling, 3: 93-104.
    • (1996) Structural Equation Modeling , vol.3 , pp. 93-104
    • Tremblay, P.F.1    Gardner, R.C.2
  • 43
    • 0002907706 scopus 로고    scopus 로고
    • Structural equation modeling
    • In: Tabachnick B. G., Fidell L. S., editors New York, NY, New York, NY,: HarperCollins
    • Ullman, J. B. 1996. "Structural equation modeling.". In Using multivariate statistics Edited by: Tabachnick, B. G. and Fidell, L. S. 709-811. New York, NY: HarperCollins.
    • (1996) Using multivariate statistics , pp. 709-811
    • Ullman, J.B.1
  • 44
    • 0001980169 scopus 로고
    • Nonpositive definite matrices in structural modeling
    • In: Bollen K., Long S., editors Newbury Park, CA, Newbury Park, CA,: Sage
    • Wothke, W. 1993. "Nonpositive definite matrices in structural modeling.". In Testing structural equation models Edited by: Bollen, K. and Long, S. 256-293. Newbury Park, CA: Sage.
    • (1993) Testing structural equation models , pp. 256-293
    • Wothke, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.