메뉴 건너뛰기




Volumn 56, Issue 2, 2013, Pages 229-238

A forward-backward algorithm for nested hidden semi-markov model and application to network traffic

Author keywords

forward backward algorithm; nested HsMM; network traffic

Indexed keywords

APPLICATION ENVIRONMENT; ARRIVAL PROCESS; CORE LAYERS; CROSS CORRELATIONS; DRIVING FACTORS; DWELL TIME; EXPONENTIAL DISTRIBUTIONS; FORWARD BACKWARD ALGORITHMS; HIDDEN SEMI-MARKOV MODELS; NESTED HSMM; NETWORK TRAFFIC; PERFORMANCE EVALUATION; REAL TRAFFIC; RECURSIONS; SELF-SIMILARITIES; SEMI-MARKOV CHAIN; STATE PROCESS; STATISTICAL DISTRIBUTION; SYSTEM STATE; TEMPORAL STRUCTURES; TIME DYNAMIC; VARIABLE PERIOD;

EID: 84873379218     PISSN: 00104620     EISSN: 14602067     Source Type: Journal    
DOI: 10.1093/comjnl/bxs124     Document Type: Article
Times cited : (9)

References (24)
  • 1
    • 0032119668 scopus 로고    scopus 로고
    • The hierarchical hidden Markov model: Analysis and applications
    • Fine, S., Singer,Y. and Tishby, N. (1998) The hierarchical hidden Markov model: analysis and applications. Mach. Learn., 32, 41-62.
    • (1998) Mach. Learn. , vol.32 , pp. 41-62
    • Fine, S.1    Singer, Y.2    Tishby, N.3
  • 3
    • 49049086909 scopus 로고    scopus 로고
    • Product named entity recognition in Chinese text
    • Zhao, J. and Liu, F. (2008) Product named entity recognition in Chinese text. Lang. Res. Eval., 42, 197-217.
    • (2008) Lang. Res. Eval. , vol.42 , pp. 197-217
    • Zhao, J.1    Liu, F.2
  • 5
    • 0036079795 scopus 로고    scopus 로고
    • HMMs and Coupled HMMs for Multi-Channel EEG classification
    • Honolulu, HI, May 12-17 IEEE, Piscataway, NJ, USA
    • Zhong, S. and Ghosh, J. (2002) HMMs and Coupled HMMs for Multi-Channel EEG Classification. Proc. 2002 Int. Joint Conf. on Neural Networks, Honolulu, HI, May 12-17, pp. 1154-1159. IEEE, Piscataway, NJ, USA.
    • (2002) Proc. 2002 Int. Joint Conf. on Neural Networks , pp. 1154-1159
    • Zhong, S.1    Ghosh, J.2
  • 6
    • 78651063979 scopus 로고    scopus 로고
    • Using hierarchical hidden markov models to perform sequence-based classification of protein structure
    • Beijing, China, October 24-28 IEEE
    • Shi, J. and Zhang,Y. (2010) Using Hierarchical Hidden Markov Models to Perform Sequence-Based Classification of Protein Structure. The 10th Int. Conf. on Signal Processing, Beijing, China, October 24-28, pp. 1789-1792. IEEE.
    • (2010) The 10th Int. Conf. on Signal Processing , pp. 1789-1792
    • Shi, J.1    Zhang, Y.2
  • 7
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner, L. (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE, 77, 257-286.
    • (1989) Proc. IEEE , vol.77 , pp. 257-286
    • Rabiner, L.1
  • 9
    • 74149089478 scopus 로고    scopus 로고
    • Hidden semi-Markov models
    • Yu, S. (2010) Hidden semi-Markov models. Artif. Intell., 174, 215-243.
    • (2010) Artif. Intell. , vol.174 , pp. 215-243
    • Yu, S.1
  • 10
    • 0042254114 scopus 로고    scopus 로고
    • Policy recognition in the abstract hidden Markov model
    • Bui, H., Venkatesh, S. and West, G. (2002) Policy recognition in the abstract hidden Markov model. J. Artif. Intell. Res., 17, 451-499.
    • (2002) J. Artif. Intell. Res. , vol.17 , pp. 451-499
    • Bui, H.1    Venkatesh, S.2    West, G.3
  • 11
    • 0030685285 scopus 로고    scopus 로고
    • Coupled hidden markov models for complex action recognition
    • San Juan, June 17-19 IEEE Computer Society
    • Brand, M., Oliver, N. and Pentland, A. (1997) Coupled Hidden Markov Models for Complex Action Recognition. Proc. Computer Vision and Pattern Recognition, San Juan, June 17-19, pp. 994-999. IEEE Computer Society.
    • (1997) Proc. Computer Vision and Pattern Recognition , pp. 994-999
    • Brand, M.1    Oliver, N.2    Pentland, A.3
  • 13
    • 27944498948 scopus 로고    scopus 로고
    • Self-similar layered hidden markov models. principles of data mining and knowledge discovery
    • Springer, Berlin/Heidelberg
    • Adibi, J. and Shen, W.-M. (2001) Self-Similar Layered Hidden Markov Models. Principles of Data Mining and Knowledge Discovery, Lecture Notes in Computer Science, Vol. 2168, pp. 1-15. Springer, Berlin/Heidelberg.
    • (2001) Lecture Notes in Computer Science , vol.2168 , pp. 1-15
    • Adibi, J.1    Shen, W.-M.2
  • 14
    • 84865038508 scopus 로고    scopus 로고
    • Internet traffic source based on hidden markov model. smart spaces and next generation wired/wireless networking
    • Springer, Berlin/Heidelberg
    • Dománska, J., Dománski, A. and Czachórski, T. (2011) Internet Traffic Source Based on Hidden Markov Model. Smart Spaces and Next Generation Wired/Wireless Networking, Lecture Notes in Computer Science, Vol. 6869, pp. 395-404. Springer, Berlin/Heidelberg.
    • (2011) Lecture Notes in Computer Science , vol.6869 , pp. 395-404
    • Dománska, J.1    Dománski, A.2    Czachórski, T.3
  • 17
    • 3142632019 scopus 로고    scopus 로고
    • Traffic self-similarity
    • Blekinge Institute of Technology, Karlskrona, Sweden. white paper
    • Popescu, A. (1999) Traffic Self-Similarity. Technical Report. Blekinge Institute of Technology, Karlskrona, Sweden. white paper.
    • (1999) Technical Report
    • Popescu, A.1
  • 19
    • 0000263475 scopus 로고
    • The determination of the order of an autoregression
    • Hannan, E. and Quinn, B. (1979) The determination of the order of an autoregression. J. R. Stat. Soc. Ser. B (Methodol.), 41, 190-195.
    • (1979) J. R. Stat. Soc. Ser. B (Methodol.) , vol.41 , pp. 190-195
    • Hannan, E.1    Quinn, B.2
  • 20
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978) Estimating the dimension of a model. Ann. Statist., 6, 461-464.
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 21
    • 0034228914 scopus 로고    scopus 로고
    • Assessing a mixture model for clustering with the integrated completed likelihood
    • Biernacki, C., Celeux, G. and Govaert, G. (2000) Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell., 22, 719-725.
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , pp. 719-725
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 23
    • 0036487280 scopus 로고    scopus 로고
    • The global k-means clustering algorithm
    • Likas, A., Vlassis, N. and JVerbeek, J. (2003) The global k-means clustering algorithm. Pattern Recognit., 36, 451-461.
    • (2003) Pattern Recognit. , vol.36 , pp. 451-461
    • Likas, A.1    Vlassis, N.2    Jverbeek, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.