-
1
-
-
33845596140
-
Robust fragments-based tracking using the integral histogram
-
june
-
A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-based tracking using the integral histogram. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 1, pages 798-805, june 2006.
-
(2006)
Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on
, vol.1
, pp. 798-805
-
-
Adam, A.1
Rivlin, E.2
Shimshoni, I.3
-
3
-
-
79959527478
-
Robust object tracking with online multiple instance learning
-
aug.
-
B. Babenko, M.-H. Yang, and S. Belongie. Robust object tracking with online multiple instance learning. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33(8):1619-1632, aug. 2011.
-
(2011)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.33
, Issue.8
, pp. 1619-1632
-
-
Babenko, B.1
Yang, M.-H.2
Belongie, S.3
-
4
-
-
0038633569
-
Kernel-based object tracking
-
may
-
D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object tracking. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 25(5):564-577, may 2003.
-
(2003)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.25
, Issue.5
, pp. 564-577
-
-
Comaniciu, D.1
Ramesh, V.2
Meer, P.3
-
5
-
-
0019574599
-
Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography
-
June
-
M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM, 24(6):381-395, June 1981.
-
(1981)
Commun. ACM
, vol.24
, Issue.6
, pp. 381-395
-
-
Fischler, M.A.1
Bolles, R.C.2
-
6
-
-
84898020313
-
Real-time tracking via on-line boosting
-
BMVA Press, doi:10.5244/C.20.6
-
H. Grabner, M. Grabner, and H. Bischof. Real-time tracking via on-line boosting. In Proceedings of the British Machine Vision Conference, volume 1, pages 6.1-6.10. BMVA Press, 2006. doi:10.5244/C.20.6.
-
(2006)
Proceedings of the British Machine Vision Conference
, vol.1
-
-
Grabner, H.1
Grabner, M.2
Bischof, H.3
-
7
-
-
0032136153
-
Condensation-conditional density propagation for visual tracking
-
10.1023/A:1008078328650
-
M. Isard and A. Blake. Condensation-conditional density propagation for visual tracking. International Journal of Computer Vision, 29:5-28, 1998. 10.1023/A:1008078328650.
-
(1998)
International Journal of Computer Vision
, vol.29
, pp. 5-28
-
-
Isard, M.1
Blake, A.2
-
8
-
-
0041508620
-
A real time adaptive visual surveillance system for tracking low-resolution colour targets in dynamically changing scenes
-
P. KaewTrakulPong and R. Bowden. A real time adaptive visual surveillance system for tracking low-resolution colour targets in dynamically changing scenes. Image and Vision Computing, 21(10):913-929, 2003.
-
(2003)
Image and Vision Computing
, vol.21
, Issue.10
, pp. 913-929
-
-
KaewTrakulPong, P.1
Bowden, R.2
-
9
-
-
77956005443
-
P-n learning: Bootstrapping binary classifiers by structural constraints
-
june
-
Z. Kalal, J. Matas, and K. Mikolajczyk. P-n learning: Bootstrapping binary classifiers by structural constraints. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 49-56, june 2010.
-
(2010)
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on
, pp. 49-56
-
-
Kalal, Z.1
Matas, J.2
Mikolajczyk, K.3
-
10
-
-
84898048177
-
Mean shift tracking with random sampling
-
A. P. Leung and S. Gong. Mean shift tracking with random sampling. In Proc. BMVC 2005, pages 729-738, 2006.
-
(2006)
Proc. BMVC 2005
, pp. 729-738
-
-
Leung, A.P.1
Gong, S.2
-
12
-
-
84871528212
-
-
C. project page. visited on 9/15/2010
-
C. project page. Caviar test case scenarios. http://homepages.inf.ed.ac. uk/rbf/CAVIARDATA1/, visited on 9/15/2010.
-
Caviar Test Case Scenarios
-
-
-
13
-
-
39749173057
-
Incremental learning for robust visual tracking
-
May
-
D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental learning for robust visual tracking. Int. J. Comput. Vision, 77:125-141, May 2008.
-
(2008)
Int. J. Comput. Vision
, vol.77
, pp. 125-141
-
-
Ross, D.A.1
Lim, J.2
Lin, R.-S.3
Yang, M.-H.4
-
14
-
-
77953201128
-
Beyond semi-supervised tracking: Tracking should be as simple as detection, but not simpler than recognition
-
27 2009-oct. 4
-
S. Stalder, H. Grabner, and L. van Gool. Beyond semi-supervised tracking: Tracking should be as simple as detection, but not simpler than recognition. In Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on, pages 1409-1416, 27 2009-oct. 4 2009.
-
(2009)
Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on
, pp. 1409-1416
-
-
Stalder, S.1
Grabner, H.2
Van Gool, L.3
|