-
1
-
-
0347900521
-
Tv based image restoration with local constraints
-
M. Bertalmio,V. Caselles, B. Rougé, and A. Solé, TV based image restoration with local constraints, J. Sci. Comput. 19 (2003), pp. 95-122.
-
(2003)
J. Sci. Comput
, vol.19
, pp. 95-122
-
-
Bertalmio, M.1
Caselles, V.2
Rougé, B.3
Solé, A.4
-
2
-
-
0031289628
-
Extensions to total variation denoising
-
San Diego, CA
-
P. Blomgren, T. F. Chan, and P. Mulet, Extensions to total variation denoising, Proceedings of SPIE 1997, San Diego, CA, 1997.
-
(1997)
Proceedings of SPIE 1997
-
-
Blomgren, P.1
Chan, T.F.2
Mulet, P.3
-
5
-
-
78651543709
-
Total generalized variation
-
K. Bredies, K. Kunisch, and T. Pock, Total generalized variation, SIAM J. Imaging Sci. 3(3) (2010), pp. 492-526.
-
(2010)
SIAM J. Imaging Sci
, vol.33
, pp. 492-526
-
-
Bredies, K.1
Kunisch, K.2
Pock, T.3
-
6
-
-
0031492191
-
Image recovery via total variation minimization and related problems
-
A. Chambolle and P. -L. Lions, Image recovery via total variation minimization and related problems, Numer. Math. 76 (1997), pp. 167-188.
-
(1997)
Numer. Math
, vol.76
, pp. 167-188
-
-
Chambolle, A.1
Lions, L.P.2
-
7
-
-
79953201848
-
A first order primal dual algorithm for convex problems with applications to imaging
-
A. Chambolle and T. Pock, A first order primal dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision 40(1) (2011), pp. 120-145
-
(2011)
J. Math. Imaging Vision
, vol.40
, Issue.1
, pp. 120-145
-
-
Chambolle, A.1
Pock, T.2
-
8
-
-
0035074671
-
Higher order total variation-based image restoration
-
T. F. Chan, A. Marquina, and P. Mulet, Higher order total variation-based image restoration, SIAM J. Sci. Comput. 22 (2000), pp. 503-516.
-
(2000)
SIAM J. Sci. Comput
, vol.22
, pp. 503-516
-
-
Chan, T.F.1
Marquina, A.2
Mulet, P.3
-
9
-
-
79953190377
-
Automated regularization parameter selection in multi-scale total variation models for image restoration
-
Y. Q. Dong, M. Hintermüller, and M. Rincon-Camacho, Automated regularization parameter selection in multi-scale total variation models for image restoration, J. Math. Imaging Vision 40 (2011), pp. 82-104.
-
J. Math. Imaging Vision
, vol.40
, Issue.2011
, pp. 82-104
-
-
Dong, Y.Q.1
Hintermüller, M.2
Rincon-Camacho, M.3
-
10
-
-
79251548920
-
Second order total generalized variation (tgv) for mri
-
F. Knoll, K. Bredies, T. Pock, and R. Stollberger, Second order total generalized variation (TGV) for MRI, Magn. Reson. Med. 65(22) (2011), pp. 480-491.
-
(2011)
Magn. Reson. Med
, vol.65
, Issue.22
, pp. 480-491
-
-
Knoll, F.1
Bredies, K.2
Pock, T.3
Stollberger, R.4
-
11
-
-
70449721128
-
Selection of regularization parameter in total variation image restoration
-
H. Liao, F. Li, and M. Ng, Selection of regularization parameter in total variation image restoration, J. Opt. Soc. Am. A 26(11) (2009), pp. 2311-2320.
-
(2009)
J. Opt. Soc. Am
, vol.A 26
, Issue.11
, pp. 2311-2320
-
-
Liao, H.1
Li, F.2
Ng, M.3
-
12
-
-
19844370110
-
An iterative regularization method for total variation-based image restoration
-
DOI 10.1137/040605412
-
S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, An iterative regularization method for total variation-based image restoration, SIAM Multiscale Model. Simul. 4 (2005), pp. 460-489. (Pubitemid 43885248)
-
(2005)
Multiscale Modeling and Simulation
, vol.4
, Issue.2
, pp. 460-489
-
-
Osher, S.1
Burger, M.2
Goldfarb, D.3
Xu, J.4
Yin, W.5
-
13
-
-
0034412757
-
Structural properties of solutions to total variation regularization problems
-
W. Ring, Structural properties of solutions to total variation regularization problems, Math. Model. Numer. Anal. 34(4) (2000), pp. 799-810.
-
(2000)
Math. Model. Numer. Anal
, vol.34
, Issue.4
, pp. 799-810
-
-
Ring, W.1
-
14
-
-
44049111982
-
Nonlinear total variation based noise removal algorithms
-
L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D 60 (1992), pp. 259-268.
-
(1992)
Phys D
, vol.60
, pp. 259-268
-
-
Rudin, L.I.1
Osher, S.2
Fatemi, E.3
-
15
-
-
0004800286
-
Spatially and scale adaptive total variation based regularization and anisotropic diffusion in image processing
-
Los Angeles
-
D. Strong and T. Chan, Spatially and scale adaptive total variation based regularization and anisotropic diffusion in image processing, Tech. Rep. , UCLA, Los Angeles, 1996.
-
(1996)
Tech. Rep. , UCLA
-
-
Strong, D.1
Chan, T.2
-
16
-
-
19844375896
-
A multiscale image representation using hierarchical (bv l2) decompositions
-
E. Tadmor, S. Nezzar, and L. Vese, A multiscale image representation using hierarchical (BV, L2) decompositions, Multiscale Model. Simul. 2 (2004), pp. 554-579.
-
(2004)
Multiscale Model. Simul
, vol.2
, pp. 554-579
-
-
Tadmor, E.1
Nezzar, S.2
Vese, L.3
-
17
-
-
0039476206
-
Problèmes Mathématiques En Plasticité
-
Méthodes Mathématiques De L'Informatique [Mathematical Methods Of Information Science] . Gauthier-Villars, Montrouge [French]
-
R. Temam, Problèmes Mathématiques en Plasticité [Mathematical Problems in Plasticity], Méthodes Mathématiques de l'Informatique [Mathematical Methods of Information Science], 12. Gauthier-Villars, Montrouge, 1983 [French].
-
(1983)
Mathematical Problems in Plasticity
, vol.12
-
-
Temam, R.1
-
19
-
-
0013110835
-
-
SIAM, Philadelphia, PA
-
C. R. Vogel, Computational Methods for Inverse Problems, Frontiers inApplied Mathematics 23, SIAM, Philadelphia, PA, 2002.
-
(2002)
Computational Methods for Inverse Problems, Frontiers InApplied Mathematics
, vol.23
-
-
Vogel, C.R.1
-
20
-
-
84859031007
-
Parameter selection for total variation based image restoration using discrepancy principle
-
Y. -W. Wen and R. H. Chan, Parameter selection for total variation based image restoration using discrepancy principle, IEEE Trans. Image Process. 21(4) (2012), pp. 1770-1781.
-
(2012)
IEEE Trans. Image Process
, vol.21
, Issue.4
, pp. 1770-1781
-
-
Wen, W.Y.1
Chan, R.H.2
|