메뉴 건너뛰기




Volumn 1, Issue 6, 2011, Pages 477-495

Fuzzy association rule mining framework and its application to effective fuzzy associative classification

Author keywords

[No Author keywords available]

Indexed keywords

ASSOCIATION RULES; CLUSTER ANALYSIS; CLUSTERING ALGORITHMS; DATA MINING; FORECASTING; FUZZY RULES; GENE EXPRESSION; GENETIC ALGORITHMS; MACHINE LEARNING; MEMBERSHIP FUNCTIONS; MULTIOBJECTIVE OPTIMIZATION; VECTORS;

EID: 84873117418     PISSN: 19424787     EISSN: 19424795     Source Type: Journal    
DOI: 10.1002/widm.40     Document Type: Article
Times cited : (20)

References (43)
  • 2
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh LA. Fuzzy sets. Inf Control 1965, 8:338-353.
    • (1965) Inf Control , vol.8 , pp. 338-353
    • Zadeh, L.A.1
  • 3
    • 0029273384 scopus 로고
    • Neuro-fuzzy modeling and control
    • Jang JSR, Sun CT. Neuro-fuzzy modeling and control. Proc IEEE 1995, 83:378-406.
    • (1995) Proc IEEE , vol.83 , pp. 378-406
    • Jang, J.S.R.1    Sun, C.T.2
  • 4
    • 0030157416 scopus 로고    scopus 로고
    • Mining quantitative association rules in large relational tables
    • Srikant R, Agrawal R. Mining quantitative association rules in large relational tables. SIGMOD Rec 1996, 25:1-12.
    • (1996) SIGMOD Rec , vol.25 , pp. 1-12
    • Srikant, R.1    Agrawal, R.2
  • 5
    • 0031162287 scopus 로고    scopus 로고
    • Association rules over interval data
    • Miller RJ, Yang Y. Association rules over interval data. SIGMOD Rec 1997, 26:452-461.
    • (1997) SIGMOD Rec , vol.26 , pp. 452-461
    • Miller, R.J.1    Yang, Y.2
  • 9
    • 0001550176 scopus 로고    scopus 로고
    • Fuzzy sets technology in knowledge discovery
    • Pedrycz W. Fuzzy sets technology in knowledge discovery. Fuzzy Sets Syst 1998, 98:279-290.
    • (1998) Fuzzy Sets Syst , vol.98 , pp. 279-290
    • Pedrycz, W.1
  • 11
    • 0031629657 scopus 로고    scopus 로고
    • An effective algorithm for discovering fuzzy rules in relational databases
    • Washington, DC: IEEE Computer Society
    • Au W, Chan K. An effective algorithm for discovering fuzzy rules in relational databases. In: Proceedings of IEEE International Conference on Fuzzy Systems. Washington, DC: IEEE Computer Society; 1998, 1314-1319.
    • (1998) Proceedings of IEEE International Conference on Fuzzy Systems , pp. 1314-1319
    • Au, W.1    Chan, K.2
  • 12
    • 0033342412 scopus 로고    scopus 로고
    • A fuzzy data mining algorithm for quantitative values
    • Adelaide: IEEE Press
    • Hong T-P, Kuo C-S, Chi S-C. A fuzzy data mining algorithm for quantitative values. In: KES. Adelaide: IEEE Press; 1999, 480-483.
    • (1999) KES , pp. 480-483
    • Hong, T.-P.1    Kuo, C.-S.2    Chi, S.-C.3
  • 13
    • 0000172008 scopus 로고    scopus 로고
    • Mining association rules from quantitative data
    • Hong T-P, Kuo C-S, Chi S-C. Mining association rules from quantitative data. Intell Data Anal 1999, 3:363-376.
    • (1999) Intell Data Anal , vol.3 , pp. 363-376
    • Hong, T.-P.1    Kuo, C.-S.2    Chi, S.-C.3
  • 14
    • 0034851408 scopus 로고    scopus 로고
    • Fuzzy association rules for handling continuous attributes
    • Pusan: IEEE Press
    • Ishibuchi H, Nakashima T, Yamamoto T. Fuzzy association rules for handling continuous attributes. In: Proceedings of IEEE ISIE. Pusan: IEEE Press; 2001, 118-121.
    • (2001) Proceedings of IEEE ISIE , pp. 118-121
    • Ishibuchi, H.1    Nakashima, T.2    Yamamoto, T.3
  • 15
    • 0003734239 scopus 로고    scopus 로고
    • A fuzzy approach for mining quantitative association rules
    • TUCS Technical Reports No. 336, May
    • Gyenesei A. A fuzzy approach for mining quantitative association rules. Turku Center for Computer Science, TUCS Technical Reports No. 336, May 2000.
    • (2000) Turku Center for Computer Science
    • Gyenesei, A.1
  • 16
    • 0003707613 scopus 로고    scopus 로고
    • Mining weighted association rules for fuzzy quantitative items
    • TUCS Technical Reports No. 346, May
    • Gyenesei A. Mining weighted association rules for fuzzy quantitative items. Turku Center for Computer Science, TUCS Technical Reports No. 346, May 2000.
    • (2000) Turku Center for Computer Science
    • Gyenesei, A.1
  • 18
    • 0348132918 scopus 로고    scopus 로고
    • Mining fuzzy association rules in databases
    • Kuok CM, Fu A, Wong MH. Mining fuzzy association rules in databases. SIGMOD Rec 1998, 27:41-46.
    • (1998) SIGMOD Rec , vol.27 , pp. 41-46
    • Kuok, C.M.1    Fu, A.2    Wong, M.H.3
  • 22
    • 33645616225 scopus 로고    scopus 로고
    • Facilitating fuzzy association rules mining by using multi-objective genetic algorithms for automated clustering
    • Washington, DC: IEEE Computer Society
    • Kaya M, Alhajj R. Facilitating fuzzy association rules mining by using multi-objective genetic algorithms for automated clustering. In: ICDM '03: Proceedings of the Third IEEE International Conference on Data Mining. Washington, DC: IEEE Computer Society; 2003, 561.
    • (2003) ICDM '03: Proceedings of the Third IEEE International Conference on Data Mining , pp. 561
    • Kaya, M.1    Alhajj, R.2
  • 28
    • 11344262990 scopus 로고    scopus 로고
    • Cpar: classification based on predictive association rules
    • San Francisco, CA
    • Yin X, Han J. Cpar: classification based on predictive association rules. In: SIAM International Conference on Data Mining (SDM '03). San Francisco, CA; 2003, 331-335.
    • (2003) SIAM International Conference on Data Mining (SDM '03) , pp. 331-335
    • Yin, X.1    Han, J.2
  • 29
    • 33846199228 scopus 로고    scopus 로고
    • The effect of threshold values on association rule based classification accuracy
    • Coenen F, Leng P. The effect of threshold values on association rule based classification accuracy. Data Knowl Eng 2007, 60:345-360.
    • (2007) Data Knowl Eng , vol.60 , pp. 345-360
    • Coenen, F.1    Leng, P.2
  • 30
    • 77952265354 scopus 로고    scopus 로고
    • Building an associative classifier based on fuzzy association rules
    • Chen Z, Chen G. Building an associative classifier based on fuzzy association rules. Int J Comput Intell Syst 2008, 1:262-273.
    • (2008) Int J Comput Intell Syst , vol.1 , pp. 262-273
    • Chen, Z.1    Chen, G.2
  • 31
    • 33751186914 scopus 로고    scopus 로고
    • Analysis of interpretabilityaccuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning
    • Ishibuchi H, Nojima Y. Analysis of interpretabilityaccuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. Int J Approx Reason 2007, 44:4-31.
    • (2007) Int J Approx Reason , vol.44 , pp. 4-31
    • Ishibuchi, H.1    Nojima, Y.2
  • 32
    • 71549145661 scopus 로고    scopus 로고
    • Looking for a good fuzzy system interpretability index: an experimental approach
    • Alonso JM, Magdalena L, González-Rodríguez G. Looking for a good fuzzy system interpretability index: an experimental approach. Int J Approx Reason 2009, 51:115-134.
    • (2009) Int J Approx Reason , vol.51 , pp. 115-134
    • Alonso, J.M.1    Magdalena, L.2    González-Rodríguez, G.3
  • 33
    • 77953111519 scopus 로고    scopus 로고
    • Integration of an index to preserve the semantic interpretability in the multiobjective evolutionary rule selection and tuning of linguistic fuzzy systems
    • Gacto M, Alcala R, Herrera F. Integration of an index to preserve the semantic interpretability in the multiobjective evolutionary rule selection and tuning of linguistic fuzzy systems. IEEE Trans Fuzzy Syst 2010, 18:515-531.
    • (2010) IEEE Trans Fuzzy Syst , vol.18 , pp. 515-531
    • Gacto, M.1    Alcala, R.2    Herrera, F.3
  • 34
    • 0033116171 scopus 로고    scopus 로고
    • Slave: a genetic learning system based on an iterative approach
    • Gonzalez A, Perez R. Slave: a genetic learning system based on an iterative approach. IEEE Trans Fuzzy Syst 1999, 7:176-191.
    • (1999) IEEE Trans Fuzzy Syst , vol.7 , pp. 176-191
    • Gonzalez, A.1    Perez, R.2
  • 35
    • 0035359278 scopus 로고    scopus 로고
    • Selection of relevant features in a fuzzy genetic learning algorithm
    • Gonzalez A, Perez R. Selection of relevant features in a fuzzy genetic learning algorithm. IEEE Trans SystMan Cybern B 2001, 31:417-425.
    • (2001) IEEE Trans SystMan Cybern B , vol.31 , pp. 417-425
    • Gonzalez, A.1    Perez, R.2
  • 36
    • 55849085431 scopus 로고    scopus 로고
    • Multi-objective genetic algorithms based automated clustering for fuzzy association rules mining
    • Kaya M, Alhajj R. Multi-objective genetic algorithms based automated clustering for fuzzy association rules mining. J Intell Inf Syst 2008, 31:243-264.
    • (2008) J Intell Inf Syst , vol.31 , pp. 243-264
    • Kaya, M.1    Alhajj, R.2
  • 39
    • 0033329971 scopus 로고    scopus 로고
    • Improving the performance of fuzzy classifier systems for pattern classification problems with continuous attributes
    • Ishibuchi H, Nakashima T. Improving the performance of fuzzy classifier systems for pattern classification problems with continuous attributes. IEEE Trans Ind Electron 1999, 46:157-168.
    • (1999) IEEE Trans Ind Electron , vol.46 , pp. 157-168
    • Ishibuchi, H.1    Nakashima, T.2
  • 40
    • 33846199228 scopus 로고    scopus 로고
    • The effect of threshold values on association rule based classification accuracy
    • Coenen F, Leng P. The effect of threshold values on association rule based classification accuracy. Data Knowl Eng 2007, 60:345-360.
    • (2007) Data Knowl Eng , vol.60 , pp. 345-360
    • Coenen, F.1    Leng, P.2
  • 41
    • 78649934709 scopus 로고    scopus 로고
    • Irvine, CA: University of California, School of Information and Computer Science; 2010, Accessed December 10, 2009
    • Frank A, Asuncion A. UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science; 2010. http://archive.ics.uci.edu/ml. Accessed December 10, 2009.
    • UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.