메뉴 건너뛰기




Volumn 87, Issue 3, 2013, Pages 1679-1689

Low-resolution structure of vaccinia virus DNA replication machinery

Author keywords

[No Author keywords available]

Indexed keywords

A20D4 POLYMERASE COFACTOR; DNA POLYMERASE; DNA POLYMERASE E9; HELICASE; HELICASE PRIMASE D5; HOLOENZYME; HOLOENZYME A20D4E9; PROTEIN A20; RECOMBINANT PROTEIN; UNCLASSIFIED DRUG; URACIL DNA GLYCOSIDASE; URACIL DNA GLYCOSYLASE D4; VIRUS ENVELOPE PROTEIN; VIRUS PROTEIN;

EID: 84873029046     PISSN: 0022538X     EISSN: 10985514     Source Type: Journal    
DOI: 10.1128/JVI.01533-12     Document Type: Article
Times cited : (41)

References (91)
  • 1
    • 1842505374 scopus 로고    scopus 로고
    • Zoonotic poxvirus infections in humans
    • Lewis-Jones S. 2004. Zoonotic poxvirus infections in humans. Curr. Opin. Infect. Dis. 17:81-89.
    • (2004) Curr. Opin. Infect. Dis. , vol.17 , pp. 81-89
    • Lewis-Jones, S.1
  • 5
    • 0034999808 scopus 로고    scopus 로고
    • The threat of smallpox and bioterrorism
    • Berche P. 2001. The threat of smallpox and bioterrorism. Trends Microbiol. 9:15-18.
    • (2001) Trends Microbiol. , vol.9 , pp. 15-18
    • Berche, P.1
  • 7
    • 0038059031 scopus 로고    scopus 로고
    • Pathogenesis and potential antiviral therapy of complications of smallpox vaccination
    • Bray M. 2003. Pathogenesis and potential antiviral therapy of complications of smallpox vaccination. Antiviral Res. 58:101-114.
    • (2003) Antiviral Res. , vol.58 , pp. 101-114
    • Bray, M.1
  • 9
    • 0037288073 scopus 로고    scopus 로고
    • Potential antiviral therapeutics for smallpox, monkeypox and other orthopoxvirus infections
    • Baker RO, Bray M, Huggins JW. 2003. Potential antiviral therapeutics for smallpox, monkeypox and other orthopoxvirus infections. Antiviral Res. 57:13-23.
    • (2003) Antiviral Res. , vol.57 , pp. 13-23
    • Baker, R.O.1    Bray, M.2    Huggins, J.W.3
  • 10
    • 0035997915 scopus 로고    scopus 로고
    • Cidofovir in the treatment of poxvirus infections
    • De Clercq E. 2002. Cidofovir in the treatment of poxvirus infections. Antiviral Res. 55:1-13.
    • (2002) Antiviral Res. , vol.55 , pp. 1-13
    • de Clercq, E.1
  • 11
    • 79952179044 scopus 로고    scopus 로고
    • Treatment of vaccinia and cowpox virus infections in mice with CMX001 and ST-246
    • Quenelle DC, Kern ER. 2010. Treatment of vaccinia and cowpox virus infections in mice with CMX001 and ST-246. Viruses 2:2681-2695.
    • (2010) Viruses , vol.2 , pp. 2681-2695
    • Quenelle, D.C.1    Kern, E.R.2
  • 13
    • 0015970777 scopus 로고
    • Vaccinia virus replication in enucleated BSC-1 cells: particle production and synthesis of viral DNA and proteins
    • Pennington T, Folett E. 1974. Vaccinia virus replication in enucleated BSC-1 cells: particle production and synthesis of viral DNA and proteins. J. Virol. 13:488-493.
    • (1974) J. Virol. , vol.13 , pp. 488-493
    • Pennington, T.1    Folett, E.2
  • 14
    • 0015223207 scopus 로고
    • Replication of vaccinia virus DNA in enucleated L-cells
    • Prescott DM, Kates J, Kirkpatrick JB. 1971. Replication of vaccinia virus DNA in enucleated L-cells. J. Mol. Biol. 59:505-508.
    • (1971) J. Mol. Biol. , vol.59 , pp. 505-508
    • Prescott, D.M.1    Kates, J.2    Kirkpatrick, J.B.3
  • 15
    • 84873022024 scopus 로고    scopus 로고
    • DNA replication & human disease; poxvirus DNA replication and human disease
    • Cold Spring Harbor Laboratory Press, NY.
    • Moss B, De Silva FS. 2006. DNA replication & human disease; poxvirus DNA replication and human disease. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
    • (2006) Cold Spring Harbor
    • Moss, B.1    de Silva, F.S.2
  • 16
    • 0020037277 scopus 로고
    • Incompletely base-paired flip-flop terminal loops link the two DNA strands of the vaccinia virus genome into one uninterrupted polynucleotide chain
    • Baroudy BM, Venkatesan S, Moss B. 1982. Incompletely base-paired flip-flop terminal loops link the two DNA strands of the vaccinia virus genome into one uninterrupted polynucleotide chain. Cell 28:315-324.
    • (1982) Cell , vol.28 , pp. 315-324
    • Baroudy, B.M.1    Venkatesan, S.2    Moss, B.3
  • 18
    • 0019846014 scopus 로고
    • The mechanism of cytoplasmic orthopoxvirus DNA replication
    • Moyer RW, Graves RL. 1981. The mechanism of cytoplasmic orthopoxvirus DNA replication. Cell 27:391-401.
    • (1981) Cell , vol.27 , pp. 391-401
    • Moyer, R.W.1    Graves, R.L.2
  • 19
    • 0024369736 scopus 로고
    • Identification of temperature-sensitive mutants of vaccinia that are defective in conversion of concatemeric replicative intermediates to the mature linear DNA genome
    • DeLange AM. 1989. Identification of temperature-sensitive mutants of vaccinia that are defective in conversion of concatemeric replicative intermediates to the mature linear DNA genome. J. Virol. 63:2437-2444.
    • (1989) J. Virol. , vol.63 , pp. 2437-2444
    • DeLange, A.M.1
  • 20
    • 0025146959 scopus 로고
    • Mutational analysis of the resolution sequence of vaccinia virus DNA: essential sequence consists of two separate AT-rich regions highly conserved among poxviruses
    • Merchlinsky M. 1990. Mutational analysis of the resolution sequence of vaccinia virus DNA: essential sequence consists of two separate AT-rich regions highly conserved among poxviruses. J. Virol. 64:5029-5035.
    • (1990) J. Virol. , vol.64 , pp. 5029-5035
    • Merchlinsky, M.1
  • 21
    • 0017719286 scopus 로고
    • Model for vaccinia virus DNA replication
    • Esteban M, Flores L, Holowczak JA. 1977. Model for vaccinia virus DNA replication. Virology 83:467-473.
    • (1977) Virology , vol.83 , pp. 467-473
    • Esteban, M.1    Flores, L.2    Holowczak, J.A.3
  • 22
    • 0019419353 scopus 로고
    • Initiation and termination of vaccinia virus DNA replication
    • Pogo BG, O'Shea M, Freimuth P. 1981. Initiation and termination of vaccinia virus DNA replication. Virology 108:241-248.
    • (1981) Virology , vol.108 , pp. 241-248
    • Pogo, B.G.1    O'Shea, M.2    Freimuth, P.3
  • 24
    • 0034988814 scopus 로고    scopus 로고
    • Repression of vaccinia virus Holliday junction resolvase inhibits processing of viral DNA into unit-length genomes
    • Garcia AD, Moss B. 2001. Repression of vaccinia virus Holliday junction resolvase inhibits processing of viral DNA into unit-length genomes. J. Virol. 75:6460-6471.
    • (2001) J. Virol. , vol.75 , pp. 6460-6471
    • Garcia, A.D.1    Moss, B.2
  • 28
    • 0029796546 scopus 로고    scopus 로고
    • Vaccinia virus DNA replication: two hundred base pairs of telomeric sequence confer optimal replication efficiency on minichromosome templates
    • Du S, Traktman P. 1996. Vaccinia virus DNA replication: two hundred base pairs of telomeric sequence confer optimal replication efficiency on minichromosome templates. Proc. Natl. Acad. Sci. U. S. A. 93:9693-9698.
    • (1996) Proc. Natl. Acad. Sci. U. S. A. , vol.93 , pp. 9693-9698
    • Du, S.1    Traktman, P.2
  • 29
    • 19744365911 scopus 로고    scopus 로고
    • Origin-independent plasmid replication occurs in vaccinia virus cytoplasmic factories and requires all five known poxvirus replication factors
    • doi:10.1186/1743-422X-2-23
    • De Silva FS, Moss B. 2005. Origin-independent plasmid replication occurs in vaccinia virus cytoplasmic factories and requires all five known poxvirus replication factors. Virol. J. 2:23. doi:10.1186/1743-422X-2-23.
    • (2005) Virol. J. , vol.2 , pp. 23
    • de Silva, F.S.1    Moss, B.2
  • 30
    • 0022534786 scopus 로고
    • Sequence-nonspecific replication of transfected plasmid DNA in poxvirus-infected cells
    • DeLange AM, McFadden G. 1986. Sequence-nonspecific replication of transfected plasmid DNA in poxvirus-infected cells. Proc. Natl. Acad. Sci. U. S. A. 83:614-618.
    • (1986) Proc. Natl. Acad. Sci. U. S. A. , vol.83 , pp. 614-618
    • DeLange, A.M.1    McFadden, G.2
  • 34
    • 0024810886 scopus 로고
    • Vaccinia virus encodes an essential gene with strong homology to protein kinases
    • Traktman P, Anderson MK, Rempel RE. 1989. Vaccinia virus encodes an essential gene with strong homology to protein kinases. J. Biol. Chem. 264:21458-21461.
    • (1989) J. Biol. Chem. , vol.264 , pp. 21458-21461
    • Traktman, P.1    Anderson, M.K.2    Rempel, R.E.3
  • 35
    • 0027418033 scopus 로고
    • A poxvirus-encoded uracil DNA glycosylase is essential for virus viability
    • Stuart DT, Upton C, Higman MA, Niles EG, McFadden G. 1993. A poxvirus-encoded uracil DNA glycosylase is essential for virus viability. J. Virol. 67:2503-2512.
    • (1993) J. Virol. , vol.67 , pp. 2503-2512
    • Stuart, D.T.1    Upton, C.2    Higman, M.A.3    Niles, E.G.4    McFadden, G.5
  • 36
    • 0031582627 scopus 로고    scopus 로고
    • Characterization of a processive form of the vaccinia virusDNApolymerase
    • McDonald WF, Klemperer N, Traktman P. 1997. Characterization of a processive form of the vaccinia virusDNApolymerase. Virology 234:168-175.
    • (1997) Virology , vol.234 , pp. 168-175
    • McDonald, W.F.1    Klemperer, N.2    Traktman, P.3
  • 37
    • 0028099339 scopus 로고
    • Vaccinia virus DNA polymerase
    • In vitro analysis of parameters affecting processivity
    • McDonald WF, Traktman P. 1994. Vaccinia virus DNA polymerase. In vitro analysis of parameters affecting processivity. J. Biol. Chem. 269: 31190-31197.
    • (1994) J. Biol. Chem. , vol.269 , pp. 31190-31197
    • McDonald, W.F.1    Traktman, P.2
  • 38
    • 17644382303 scopus 로고    scopus 로고
    • Enzymatic processing of replication and recombination intermediates by the vaccinia virus DNA polymerase
    • Hamilton MD, Evans DH. 2005. Enzymatic processing of replication and recombination intermediates by the vaccinia virus DNA polymerase. Nucleic Acids Res. 33:2259-2268.
    • (2005) Nucleic Acids Res. , vol.33 , pp. 2259-2268
    • Hamilton, M.D.1    Evans, D.H.2
  • 39
    • 0033541947 scopus 로고    scopus 로고
    • Vaccinia virus DNA polymerase promotes DNA pairing and strand-transfer reactions
    • Willer DO, Mann MJ, Zhang W, Evans DH. 1999. Vaccinia virus DNA polymerase promotes DNA pairing and strand-transfer reactions. Virology 257:511-523.
    • (1999) Virology , vol.257 , pp. 511-523
    • Willer, D.O.1    Mann, M.J.2    Zhang, W.3    Evans, D.H.4
  • 40
    • 0034534405 scopus 로고    scopus 로고
    • In vitro concatemer formation catalyzed by vaccinia virus DNA polymerase
    • Willer DO, Yao XD, Mann MJ, Evans DH. 2000. In vitro concatemer formation catalyzed by vaccinia virus DNA polymerase. Virology 278: 562-569.
    • (2000) Virology , vol.278 , pp. 562-569
    • Willer, D.O.1    Yao, X.D.2    Mann, M.J.3    Evans, D.H.4
  • 41
    • 0036943963 scopus 로고    scopus 로고
    • Mapping interaction sites of the A20R protein component of the vaccinia virus DNA replication complex
    • Ishii K, Moss B. 2002. Mapping interaction sites of the A20R protein component of the vaccinia virus DNA replication complex. Virology 303: 232-239.
    • (2002) Virology , vol.303 , pp. 232-239
    • Ishii, K.1    Moss, B.2
  • 42
    • 0035198155 scopus 로고    scopus 로고
    • The A20R protein is a stoichiometric component of the processive form of vaccinia virus DNA polymerase
    • Klemperer N, McDonald W, Boyle K, Unger B, Traktman P. 2001. The A20R protein is a stoichiometric component of the processive form of vaccinia virus DNA polymerase. J. Virol. 75:12298-12307.
    • (2001) J. Virol. , vol.75 , pp. 12298-12307
    • Klemperer, N.1    McDonald, W.2    Boyle, K.3    Unger, B.4    Traktman, P.5
  • 43
    • 33645639121 scopus 로고    scopus 로고
    • Vaccinia virus uracil DNA glycosylase interacts with the A20 protein to form a heterodimeric processivity factor for the viral DNA polymerase
    • Stanitsa ES, Arps L, Traktman P. 2006. Vaccinia virus uracil DNA glycosylase interacts with the A20 protein to form a heterodimeric processivity factor for the viral DNA polymerase. J. Biol. Chem. 281:3439-3451.
    • (2006) J. Biol. Chem. , vol.281 , pp. 3439-3451
    • Stanitsa, E.S.1    Arps, L.2    Traktman, P.3
  • 44
    • 34547629029 scopus 로고    scopus 로고
    • Crystal structure of vaccinia virus uracil-DNA glycosylase reveals dimeric assembly
    • doi:10.1186/1741 -6807-7-45
    • Schormann N, Grigorian A, Samal A, Krishnan R, DeLucas L, Chattopadhyay D. 2007. Crystal structure of vaccinia virus uracil-DNA glycosylase reveals dimeric assembly. BMC Struct. Biol. 7:45. doi:10.1186/1741 -6807-7-45.
    • (2007) BMC Struct. Biol. , vol.7 , pp. 45
    • Schormann, N.1    Grigorian, A.2    Samal, A.3    Krishnan, R.4    DeLucas, L.5    Chattopadhyay, D.6
  • 45
    • 0030971775 scopus 로고    scopus 로고
    • Construction of a vaccinia virus deficient in the essential DNA repair enzyme uracil DNA glycosylase by a complementing cell line
    • Holzer GW, Falkner FG. 1997. Construction of a vaccinia virus deficient in the essential DNA repair enzyme uracil DNA glycosylase by a complementing cell line. J. Virol. 71:4997-5002.
    • (1997) J. Virol. , vol.71 , pp. 4997-5002
    • Holzer, G.W.1    Falkner, F.G.2
  • 46
    • 0028298871 scopus 로고
    • The vaccinia virusencoded uracil DNA glycosylase has an essential role in viral DNA replication
    • Millns AK, Carpenter MS, DeLange AM. 1994. The vaccinia virusencoded uracil DNA glycosylase has an essential role in viral DNA replication. Virology 198:504-513.
    • (1994) Virology , vol.198 , pp. 504-513
    • Millns, A.K.1    Carpenter, M.S.2    DeLange, A.M.3
  • 47
    • 60849137493 scopus 로고    scopus 로고
    • Effects of vaccinia virus uracil DNA glycosylase catalytic site and deoxyuridine triphosphatase deletion mutations individually and together on replication in active and quiescent cells and pathogenesis in mice
    • doi:10.1186/1743-422X-5-145
    • De Silva FS, Moss B. 2008. Effects of vaccinia virus uracil DNA glycosylase catalytic site and deoxyuridine triphosphatase deletion mutations individually and together on replication in active and quiescent cells and pathogenesis in mice. Virol. J. 5:145. doi:10.1186/1743-422X-5-145.
    • (2008) Virol. J. , vol.5 , pp. 145
    • de Silva, F.S.1    Moss, B.2
  • 48
    • 79960147916 scopus 로고    scopus 로고
    • Evaluation of the role of the vaccinia virus uracilDNAglycosylase and A20 proteins as intrinsic components of the DNA polymerase holoenzyme
    • Boyle KA, Stanitsa ES, Greseth MD, Lindgren JK, Traktman P. 2011. Evaluation of the role of the vaccinia virus uracilDNAglycosylase and A20 proteins as intrinsic components of the DNA polymerase holoenzyme. J. Biol. Chem. 286:24702-24713.
    • (2011) J. Biol. Chem. , vol.286 , pp. 24702-24713
    • Boyle, K.A.1    Stanitsa, E.S.2    Greseth, M.D.3    Lindgren, J.K.4    Traktman, P.5
  • 49
    • 0029149630 scopus 로고
    • The vaccinia virus D5 protein, which is required for DNA replication, is a nucleic acidindependent nucleoside triphosphatase
    • Evans E, Klemperer N, Ghosh R, Traktman P. 1995. The vaccinia virus D5 protein, which is required for DNA replication, is a nucleic acidindependent nucleoside triphosphatase. J. Virol. 69:5353-5361.
    • (1995) J. Virol. , vol.69 , pp. 5353-5361
    • Evans, E.1    Klemperer, N.2    Ghosh, R.3    Traktman, P.4
  • 50
    • 22444435033 scopus 로고    scopus 로고
    • Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: structural insights and new members
    • Iyer LM, Koonin EV, Leipe DD, Aravind L. 2005. Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: structural insights and new members. Nucleic Acids Res. 33: 3875-3896.
    • (2005) Nucleic Acids Res. , vol.33 , pp. 3875-3896
    • Iyer, L.M.1    Koonin, E.V.2    Leipe, D.D.3    Aravind, L.4
  • 51
    • 0024462161 scopus 로고
    • Viral proteins containing the purine NTP-binding sequence pattern
    • Gorbalenya AE, Koonin EV. 1989. Viral proteins containing the purine NTP-binding sequence pattern. Nucleic Acids Res. 17:8413-8440.
    • (1989) Nucleic Acids Res. , vol.17 , pp. 8413-8440
    • Gorbalenya, A.E.1    Koonin, E.V.2
  • 52
    • 0035167322 scopus 로고    scopus 로고
    • Common origin of four diverse families of large eukaryotic DNA viruses
    • Iyer LM, Aravind L, Koonin EV. 2001. Common origin of four diverse families of large eukaryotic DNA viruses. J. Virol. 75:11720-11734.
    • (2001) J. Virol. , vol.75 , pp. 11720-11734
    • Iyer, L.M.1    Aravind, L.2    Koonin, E.V.3
  • 53
    • 33846086914 scopus 로고    scopus 로고
    • Biochemical and genetic analysis of the vaccinia virus D5 protein: multimerization-dependent ATPase activity is required to support viral DNA replication
    • Boyle KA, Arps L, Traktman P. 2007. Biochemical and genetic analysis of the vaccinia virus D5 protein: multimerization-dependent ATPase activity is required to support viral DNA replication. J. Virol. 81:844-859.
    • (2007) J. Virol. , vol.81 , pp. 844-859
    • Boyle, K.A.1    Arps, L.2    Traktman, P.3
  • 54
    • 57049132029 scopus 로고    scopus 로고
    • Products and substrate/template usage of vaccinia virus DNA primase
    • De Silva FS, Paran N, Moss B. 2009. Products and substrate/template usage of vaccinia virus DNA primase. Virology 383:136-141.
    • (2009) Virology , vol.383 , pp. 136-141
    • de Silva, F.S.1    Paran, N.2    Moss, B.3
  • 55
    • 55549143334 scopus 로고    scopus 로고
    • Insight into the integrase-DNA recognition mechanism
    • A specific DNA-binding mode revealed by an enzymatically labeled integrase
    • Delelis O, Carayon K, Guiot E, Leh H, Tauc P, Brochon JC, Mouscadet JF, Deprez E. 2008. Insight into the integrase-DNA recognition mechanism. A specific DNA-binding mode revealed by an enzymatically labeled integrase. J. Biol. Chem. 283:27838-27849.
    • (2008) J. Biol. Chem. , vol.283 , pp. 27838-27849
    • Delelis, O.1    Carayon, K.2    Guiot, E.3    Leh, H.4    Tauc, P.5    Brochon, J.C.6    Mouscadet, J.F.7    Deprez, E.8
  • 56
    • 11144340226 scopus 로고    scopus 로고
    • Baculovirus expression system for heterologous multiprotein complexes
    • Berger I, Fitzgerald DJ, Richmond TJ. 2004. Baculovirus expression system for heterologous multiprotein complexes. Nat. Biotechnol. 22: 1583-1587.
    • (2004) Nat. Biotechnol. , vol.22 , pp. 1583-1587
    • Berger, I.1    Fitzgerald, D.J.2    Richmond, T.J.3
  • 57
  • 58
    • 0033377664 scopus 로고    scopus 로고
    • EMAN: semiautomated software for high-resolution single-particle reconstructions
    • Ludtke SJ, Baldwin PR, Chiu W. 1999. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128:82-97.
    • (1999) J. Struct. Biol. , vol.128 , pp. 82-97
    • Ludtke, S.J.1    Baldwin, P.R.2    Chiu, W.3
  • 59
    • 0038441501 scopus 로고    scopus 로고
    • Accurate determination of local defocus and specimen tilt in electron microscopy
    • Mindell JA, Grigorieff N. 2003. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142:334-347.
    • (2003) J. Struct. Biol. , vol.142 , pp. 334-347
    • Mindell, J.A.1    Grigorieff, N.2
  • 64
    • 33645214738 scopus 로고    scopus 로고
    • ATSAS 21
    • A program package for small-angle scattering data analysis. J. Appl
    • Konarev PV, Petoukhov MV, Volkov VV, Svergun DI. 2006. ATSAS 2.1, a program package for small-angle scattering data analysis. J. Appl. Crystallogr. 39:277-286.
    • (2006) Crystallogr. , vol.39 , pp. 277-286
    • Konarev, P.V.1    Petoukhov, M.V.2    Volkov, V.V.3    Svergun, D.I.4
  • 65
    • 0026910457 scopus 로고
    • Determination of the regularization parameter in indirect- transform methods using perceptual criteria
    • Svergun DI. 1992. Determination of the regularization parameter in indirect- transform methods using perceptual criteria. J. Appl. Crystallogr. 25:495-503.
    • (1992) J. Appl. Crystallogr. , vol.25 , pp. 495-503
    • Svergun, D.I.1
  • 66
    • 62649139615 scopus 로고    scopus 로고
    • DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering
    • Franke D, Svergun DI. 2009. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J. Appl. Crystallogr. 42: 342-346.
    • (2009) J. Appl. Crystallogr. , vol.42 , pp. 342-346
    • Franke, D.1    Svergun, D.I.2
  • 67
    • 0037701585 scopus 로고    scopus 로고
    • Uniqueness of ab-initio shape determination in small-angle scattering
    • Volkov VV, Svergun DI. 2003. Uniqueness of ab-initio shape determination in small-angle scattering. J. Appl. Crystallogr. 36:860-864.
    • (2003) J. Appl. Crystallogr. , vol.36 , pp. 860-864
    • Volkov, V.V.1    Svergun, D.I.2
  • 68
    • 77955358961 scopus 로고    scopus 로고
    • Using Situs for the integration of multi-resolution structures
    • Wriggers W. 2010. Using Situs for the integration of multi-resolution structures. Biophys. Rev. 2:21-27.
    • (2010) Biophys. Rev. , vol.2 , pp. 21-27
    • Wriggers, W.1
  • 70
    • 29244447181 scopus 로고    scopus 로고
    • Kalign: an accurate and fast multiple sequence alignment algorithm
    • doi:10 .1186/1741-2105-6-298
    • Lassmann T, Sonnhammer EL. 2005. Kalign: an accurate and fast multiple sequence alignment algorithm. BMC Bioinformatics 6:298. doi:10 .1186/1741-2105-6-298.
    • (2005) BMC Bioinformatics , vol.6 , pp. 298
    • Lassmann, T.1    Sonnhammer, E.L.2
  • 71
    • 0035012982 scopus 로고    scopus 로고
    • STRAP: editor for STRuctural Alignments of Proteins
    • Gille C, Frommel C. 2001. STRAP: editor for STRuctural Alignments of Proteins. Bioinformatics 17:377-378.
    • (2001) Bioinformatics , vol.17 , pp. 377-378
    • Gille, C.1    Frommel, C.2
  • 73
    • 0029185933 scopus 로고
    • CRYSOL: a program to evalate X-ray solution scattering of biological macromolecules from atomic coordinates
    • Svergun DI, Barberato C, Koch MHJ. 1995. CRYSOL: a program to evalate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr. 28:768-773.
    • (1995) J. Appl. Crystallogr. , vol.28 , pp. 768-773
    • Svergun, D.I.1    Barberato, C.2    Koch, M.H.J.3
  • 74
    • 0035124442 scopus 로고    scopus 로고
    • Automated matching of high- and lowresolution structural models
    • Kozin M, Svergun DI. 2000. Automated matching of high- and lowresolution structural models. J. Appl. Crystallogr. 34:33-41.
    • (2000) J. Appl. Crystallogr. , vol.34 , pp. 33-41
    • Kozin, M.1    Svergun, D.I.2
  • 75
    • 0001229341 scopus 로고    scopus 로고
    • Calculation of hydrodynamic properties of globular proteins from their atomic-level structure
    • Garcia De La Torre J, Huertas ML, Carrasco B. 2000. Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys. J. 78:719-730.
    • (2000) Biophys. J. , vol.78 , pp. 719-730
    • de la Torre, J.G.1    Huertas, M.L.2    Carrasco, B.3
  • 77
    • 0025261685 scopus 로고
    • A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses
    • Gorbalenya AE, Koonin EV, Wolf YI. 1990. A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses. FEBS Lett. 262:145-148.
    • (1990) FEBS Lett. , vol.262 , pp. 145-148
    • Gorbalenya, A.E.1    Koonin, E.V.2    Wolf, Y.I.3
  • 78
    • 34548638261 scopus 로고    scopus 로고
    • Structure and mechanism of helicases and nucleic acid translocases
    • Singleton MR, Dillingham MS, Wigley DB. 2007. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76:23-50.
    • (2007) Annu. Rev. Biochem. , vol.76 , pp. 23-50
    • Singleton, M.R.1    Dillingham, M.S.2    Wigley, D.B.3
  • 80
    • 33746375404 scopus 로고    scopus 로고
    • Mechanism of DNA translocation in a replicative hexameric helicase
    • Enemark EJ, Joshua-Tor L. 2006. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 442:270-275.
    • (2006) Nature , vol.442 , pp. 270-275
    • Enemark, E.J.1    Joshua-Tor, L.2
  • 81
    • 0027184416 scopus 로고
    • Phage P4 alpha protein is multifunctional with origin recognition, helicase and primase activities
    • Ziegelin G, Scherzinger E, Lurz R, Lanka E. 1993. Phage P4 alpha protein is multifunctional with origin recognition, helicase and primase activities. EMBO J. 12:3703-3708.
    • (1993) EMBO J. , vol.12 , pp. 3703-3708
    • Ziegelin, G.1    Scherzinger, E.2    Lurz, R.3    Lanka, E.4
  • 82
    • 0027396861 scopus 로고
    • The extreme C terminus of herpes simplex virusDNApolymerase is crucial for functional interaction with processivity factor UL42 and for viral replication
    • Digard P, Bebrin WR, Weisshart K, Coen DM. 1993. The extreme C terminus of herpes simplex virusDNApolymerase is crucial for functional interaction with processivity factor UL42 and for viral replication. J. Virol. 67:398-406.
    • (1993) J. Virol. , vol.67 , pp. 398-406
    • Digard, P.1    Bebrin, W.R.2    Weisshart, K.3    Coen, D.M.4
  • 83
    • 0033867542 scopus 로고    scopus 로고
    • The crystal structure of an unusual processivity factor, herpes simplex virus UL42, bound to the C terminus of its cognate polymerase
    • Zuccola HJ, Filman DJ, Coen DM, Hogle JM. 2000. The crystal structure of an unusual processivity factor, herpes simplex virus UL42, bound to the C terminus of its cognate polymerase. Mol. Cell 5:267-278.
    • (2000) Mol. Cell , vol.5 , pp. 267-278
    • Zuccola, H.J.1    Filman, D.J.2    Coen, D.M.3    Hogle, J.M.4
  • 84
    • 0032167424 scopus 로고    scopus 로고
    • Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA
    • Parikh SS, Mol CD, Slupphaug G, Bharati S, Krokan HE, Tainer JA. 1998. Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. EMBO J. 17:5214-5226.
    • (1998) EMBO J. , vol.17 , pp. 5214-5226
    • Parikh, S.S.1    Mol, C.D.2    Slupphaug, G.3    Bharati, S.4    Krokan, H.E.5    Tainer, J.A.6
  • 85
    • 0035369086 scopus 로고    scopus 로고
    • Structure of the replicating complex of a pol alpha family DNA polymerase
    • Franklin MC, Wang J, Steitz TA. 2001. Structure of the replicating complex of a pol alpha family DNA polymerase. Cell 105:657-667.
    • (2001) Cell , vol.105 , pp. 657-667
    • Franklin, M.C.1    Wang, J.2    Steitz, T.A.3
  • 86
    • 47849125401 scopus 로고    scopus 로고
    • Uracil recognition in archaeal DNA polymerases captured by X-ray crystallography
    • Firbank SJ, Wardle J, Heslop P, Lewis RJ, Connolly BA. 2008. Uracil recognition in archaeal DNA polymerases captured by X-ray crystallography. J. Mol. Biol. 381:529-539.
    • (2008) J. Mol. Biol. , vol.381 , pp. 529-539
    • Firbank, S.J.1    Wardle, J.2    Heslop, P.3    Lewis, R.J.4    Connolly, B.A.5
  • 88
    • 78649554103 scopus 로고    scopus 로고
    • Structural analysis of bacteriophage T4 DNA replication: a review in the Virology Journal series on bacteriophage T4 and its relatives
    • doi:10.1186/1743-422X-7-359
    • Mueser TC, Hinerman JM, Devos JM, Boyer RA, Williams KJ. 2010. Structural analysis of bacteriophage T4 DNA replication: a review in the Virology Journal series on bacteriophage T4 and its relatives. Virol. J. 7:359. doi:10.1186/1743-422X-7-359.
    • (2010) Virol. J. , vol.7 , pp. 359
    • Mueser, T.C.1    Hinerman, J.M.2    Devos, J.M.3    Boyer, R.A.4    Williams, K.J.5
  • 90
    • 4444226952 scopus 로고    scopus 로고
    • Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen
    • Gai D, Zhao R, Li D, Finkielstein CV, Chen XS. 2004. Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen. Cell 119:47-60.
    • (2004) Cell , vol.119 , pp. 47-60
    • Gai, D.1    Zhao, R.2    Li, D.3    Finkielstein, C0V.4    Chen, X.S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.