-
1
-
-
0034819702
-
Database-friendly random projections
-
ACM
-
D. Achlioptas. Database-friendly random projections. In Proc. of ACM SIGMOD, pages 274-281. ACM, 2001.
-
(2001)
Proc. of ACM SIGMOD
, pp. 274-281
-
-
Achlioptas, D.1
-
3
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In Proc. of ACM SIGMOD, pages 94-105, 1998.
-
(1998)
Proc. of ACM SIGMOD
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
4
-
-
78650957406
-
Improving the visual analysis of high-dimensional datasets using quality measures
-
G. Albuquerque, M. Eisemann, D. J. Lehmann, H. Theisel, and M. Magnor. Improving the visual analysis of high-dimensional datasets using quality measures. In Proc. IEEE VAST 2010, pages 19-26, 2010.
-
(2010)
Proc. IEEE VAST 2010
, pp. 19-26
-
-
Albuquerque, G.1
Eisemann, M.2
Lehmann, D.J.3
Theisel, H.4
Magnor, M.5
-
7
-
-
19544379322
-
Subspace selection for clustering high-dimensional data
-
C. Baumgartner, C. Plant, K. Kailing, H.-P. Kriegel, and P. Kroger. Subspace selection for clustering high-dimensional data. In Proc. of the IEEE ICDM, pages 11-18, 2004.
-
(2004)
Proc. of the IEEE ICDM
, pp. 11-18
-
-
Baumgartner, C.1
Plant, C.2
Kailing, K.3
Kriegel, H.-P.4
Kroger, P.5
-
8
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15:1373-1396, 2003.
-
(2003)
Neural Computation
, vol.15
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
9
-
-
0035789317
-
Random projection in dimensionality reduction: Applications to image and text data
-
E. Bingham and H. Mannila. Random projection in dimensionality reduction: applications to image and text data. In Proc. of ACM SIGKDD, pages 245-250, 2001.
-
(2001)
Proc. of ACM SIGKDD
, pp. 245-250
-
-
Bingham, E.1
Mannila, H.2
-
10
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
New York, NY, USA, ACM
-
B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. In Proc. of COLT, pages 144-152, New York, NY, USA, 1992. ACM.
-
(1992)
Proc. of COLT
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
11
-
-
50149115861
-
-
Technical report, Iowa State University
-
D. Caragea, D. Cook, V., and Honavar. Visual methods for examining support vector machine results, with applications to gene expression data analysis. Technical report, Iowa State University, 2005.
-
(2005)
Visual Methods for Examining Support Vector Machine Results, with Applications to Gene Expression Data Analysis
-
-
Caragea, D.1
Cook, D.2
Honavar, V.3
-
12
-
-
72849129962
-
Two-stage framework for visualization of clustered high dimensional data
-
J. Choo, S. Bohn, and H. Park. Two-stage framework for visualization of clustered high dimensional data. In IEEE VAST, pages 67-74, 2009.
-
(2009)
IEEE VAST
, pp. 67-74
-
-
Choo, J.1
Bohn, S.2
Park, H.3
-
13
-
-
84952217916
-
Grand tour and projection pursuit
-
D. Cook, A. Buja, J. Cabrera, and C. Hurley. Grand tour and projection pursuit. Journal of Computational and Graphical Statistics, 4:155-172, 1995.
-
(1995)
Journal of Computational and Graphical Statistics
, vol.4
, pp. 155-172
-
-
Cook, D.1
Buja, A.2
Cabrera, J.3
Hurley, C.4
-
14
-
-
1942517297
-
Random projection for high dimensional data clustering: A cluster ensemble approach
-
X. Z. Fern and C. E. Brodley. Random projection for high dimensional data clustering: A cluster ensemble approach. In ICML'03, pages 186-193, 2003.
-
(2003)
ICML'03
, pp. 186-193
-
-
Fern, X.Z.1
Brodley, C.E.2
-
15
-
-
63249106662
-
Experiments with random projections for machine learning
-
New York, NY, USA, ACM
-
D. Fradkin and D. Madigan. Experiments with random projections for machine learning. In Proc. of ACM KDD, pages 517-522, New York, NY, USA, 2003. ACM.
-
(2003)
Proc. of ACM KDD
, pp. 517-522
-
-
Fradkin, D.1
Madigan, D.2
-
16
-
-
0016102310
-
A projection pursuit algorithm for exploratory data analysis
-
J. H. Friedman and J.W. Tukey. A projection pursuit algorithm for exploratory data analysis. IEEE Transactions on Computers, C-23:881-890, 1974.
-
(1974)
IEEE Transactions on Computers
, vol.C-23
, pp. 881-890
-
-
Friedman, J.H.1
Tukey, J.W.2
-
18
-
-
57349148852
-
Random projections for manifold learning
-
C. Hegde, M. Wakin, and R. Baraniuk. Random projections for manifold learning. In Neural Information Processing Systems (NIPS), Vancouver, BC, 2007.
-
Neural Information Processing Systems (NIPS), Vancouver, BC, 2007
-
-
Hegde, C.1
Wakin, M.2
Baraniuk, R.3
-
19
-
-
0037336305
-
Using projections to visually cluster high-dimensional data
-
A. Hinneburg, D. Keim, and M. Wawryniuk. Using projections to visually cluster high-dimensional data. Computing in Science Engineering, 5(2):14-25, 2003.
-
(2003)
Computing in Science Engineering
, vol.5
, Issue.2
, pp. 14-25
-
-
Hinneburg, A.1
Keim, D.2
Wawryniuk, M.3
-
21
-
-
78650944088
-
Dimstiller: Workflows for dimensional analysis and reduction
-
S. Ingram, T. Munzner, V. Irvine, M. Tory, S. Bergner, and T. Mller. Dimstiller: Workflows for dimensional analysis and reduction. In IEEE VAST'10, pages 3-10, 2010.
-
(2010)
IEEE VAST'10
, pp. 3-10
-
-
Ingram, S.1
Munzner, T.2
Irvine, V.3
Tory, M.4
Bergner, S.5
Mller, T.6
-
22
-
-
84996229696
-
A rank-by-feature framework for interactive exploration of multidimensional data
-
March
-
S. J. and B. Shneiderman. A rank-by-feature framework for interactive exploration of multidimensional data. Information Visualization, 4:96-113, March 2005.
-
(2005)
Information Visualization
, vol.4
, pp. 96-113
-
-
Shneiderman, B.1
-
23
-
-
68549083629
-
iPCA: An Interactive System for PCA-based Visual Analytics
-
D. H. Jeong, C. Ziemkiewicz, B. Fisher, W. Ribarsky, and R. Chang. iPCA: An Interactive System for PCA-based Visual Analytics. Computer Graphics Forum, 28(3):767-774, 2009.
-
(2009)
Computer Graphics Forum
, vol.28
, Issue.3
, pp. 767-774
-
-
Jeong, D.H.1
Ziemkiewicz, C.2
Fisher, B.3
Ribarsky, W.4
Chang, R.5
-
24
-
-
0029178509
-
Landgrebe. Projection pursuit for high dimensional feature reduction: Paralleland sequential approaches
-
L. O. Jimenez and D. A. Landgrebe. Projection pursuit for high dimensional feature reduction: paralleland sequential approaches. In Geoscience and Remote Sensing Symposium, volume 1, pages 148-150, 1995.
-
(1995)
Geoscience and Remote Sensing Symposium
, vol.1
, pp. 148-150
-
-
Jimenez, L.O.1
A, D.2
-
27
-
-
0033897901
-
Designing pixel-oriented visualization techniques: Theory and applications
-
D. A. Keim. Designing pixel-oriented visualization techniques: Theory and applications. IEEE TVCG, 6(1), 2000.
-
(2000)
IEEE TVCG
, vol.6
, Issue.1
-
-
Keim, D.A.1
-
28
-
-
0012565294
-
A nonmetric variety of linear factor analysis
-
J. Kruskal and R. Shepard. A nonmetric variety of linear factor analysis. Psychometrika, 39:123-157, 1974.
-
(1974)
Psychometrika
, vol.39
, pp. 123-157
-
-
Kruskal, J.1
Shepard, R.2
-
29
-
-
29544443712
-
Projection pursuit for exploratory supervised classification
-
E.-K. Lee, D. Cook, S. Klinke, and T. Lumley. Projection pursuit for exploratory supervised classification. Journal of Computational and Graphical Statistics, 14:831-846, 2005.
-
(2005)
Journal of Computational and Graphical Statistics
, vol.14
, pp. 831-846
-
-
Lee, E.-K.1
Cook, D.2
Klinke, S.3
Lumley, T.4
-
30
-
-
78649400333
-
Maximum likelihood estimation of intrinsic dimension
-
L. K. Saul, Y. Weiss, and L. Bottou, editors, Cambridge, MA, MIT Press
-
E. Levina and P. J. Bickel. Maximum likelihood estimation of intrinsic dimension. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 17, pages 777-784, Cambridge, MA, 2005. MIT Press.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 777-784
-
-
Levina, E.1
Bickel, P.J.2
-
32
-
-
0002773602
-
Random numbers fall mainly in the planes
-
G. Marsaglia. Random numbers fall mainly in the planes. In Proc. National Academy of Sciences, volume 61, pages 25-28, 1968.
-
(1968)
Proc. National Academy of Sciences
, vol.61
, pp. 25-28
-
-
Marsaglia, G.1
-
33
-
-
84872973357
-
Nonlinear approach in classification visualization and evaluation
-
V. Osinska and P. Baia. Nonlinear approach in classification visualization and evaluation. In Congress ISKO, '09, pages 257-270, 2009.
-
(2009)
Congress ISKO, '09
, pp. 257-270
-
-
Osinska, V.1
Baia, P.2
-
34
-
-
17044376078
-
Subspace clustering for high dimensional data: A review
-
June
-
L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data: a review. SIGKDD Explor. Newsl., 6(1):90-105, June 2004.
-
(2004)
SIGKDD Explor. Newsl.
, vol.6
, Issue.1
, pp. 90-105
-
-
Parsons, L.1
Haque, E.2
Liu, H.3
-
35
-
-
0000325341
-
On lines and planes of closest fit to systems of points in space
-
K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2:559-572, 1901.
-
(1901)
Philosophical Magazine
, vol.2
, pp. 559-572
-
-
Pearson, K.1
-
36
-
-
0347201147
-
Multiclass cancer diagnosis using tumor gene expression signature
-
S. Ramaswamy, P. Tamayo, R. Rifkin, S. Mukherjee, C. Yeang, M. Angelo, C. Ladd, M. Reich, E. Latulippe, J. Mesirov, T. Poggio, W. Gerald, M. Loda, E. Lander, and T. Golub. Multiclass cancer diagnosis using tumor gene expression signature. PNAS, 98:15149-15154, 2001.
-
(2001)
PNAS
, vol.98
, pp. 15149-15154
-
-
Ramaswamy, S.1
Tamayo, P.2
Rifkin, R.3
Mukherjee, S.4
Yeang, C.5
Angelo, M.6
Ladd, C.7
Reich, M.8
Latulippe, E.9
Mesirov, J.10
Poggio, T.11
Gerald, W.12
Loda, M.13
Lander, E.14
Golub, T.15
-
37
-
-
68549110238
-
Selecting good views of high-dimensional data using class consistency
-
M. Sips, B. Neubert, J. P. Lewis, and P. Hanrahan. Selecting good views of high-dimensional data using class consistency. Computer Graphics Forum, 28(3):831-838, 2009.
-
(2009)
Computer Graphics Forum
, vol.28
, Issue.3
, pp. 831-838
-
-
Sips, M.1
Neubert, B.2
Lewis, J.P.3
Hanrahan, P.4
-
38
-
-
41349089460
-
Jigsaw: Supporting investigative analysis through interactive visualization
-
J. Stasko, C. Gorg, Z. Liu, and K. Singhal. Jigsaw: Supporting investigative analysis through interactive visualization. In Proc. of the IEEE VAST, pages 131-138, 2007.
-
(2007)
Proc. of the IEEE VAST
, pp. 131-138
-
-
Stasko, J.1
Gorg, C.2
Liu, Z.3
Singhal, K.4
-
39
-
-
0037560966
-
Estimating the cluster tree of a density by analyzing the minimal spanning tree of a sample
-
W. Stuetzle. Estimating the cluster tree of a density by analyzing the minimal spanning tree of a sample. Journal of Classification, 20:25-47, 2003.
-
(2003)
Journal of Classification
, vol.20
, pp. 25-47
-
-
Stuetzle, W.1
-
41
-
-
79952902092
-
Automated analytical methods to support visual exploration of high-dimensional data
-
A. Tatu, G. Albuquerque, M. Eisemann, P. Bak, H. Theisel, M. Magnor, and D. Keim. Automated analytical methods to support visual exploration of high-dimensional data. IEEE Transactions on Visualization and Computer Graphics, 17:584-597, 2011.
-
(2011)
IEEE Transactions on Visualization and Computer Graphics
, vol.17
, pp. 584-597
-
-
Tatu, A.1
Albuquerque, G.2
Eisemann, M.3
Bak, P.4
Theisel, H.5
Magnor, M.6
Keim, D.7
-
42
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.C.3
-
44
-
-
0000640338
-
Mathematics and the picturing of data
-
Vancouver, Canada, Canadian Mathematical Congress
-
J. W. Tukey. Mathematics and the picturing of data. In Pro. of the International Congress of Mathematicians, pages 523-531, Vancouver, Canada, 1974. Canadian Mathematical Congress.
-
(1974)
Pro. of the International Congress of Mathematicians
, pp. 523-531
-
-
Tukey, J.W.1
-
45
-
-
80955143380
-
Brushing dimensions - A dual visual analysis model for high-dimensional data
-
C. Turkay, P. Filzmoser, and H. Hauser. Brushing dimensions - a dual visual analysis model for high-dimensional data. IEEE TVCG, 17(12):2591-2599, 2011.
-
(2011)
IEEE TVCG
, vol.17
, Issue.12
, pp. 2591-2599
-
-
Turkay, C.1
Filzmoser, P.2
Hauser, H.3
-
46
-
-
84872930828
-
Chirp: A new classifier based on composite hypercubes on iterated random projections
-
L. Wilkinson, A. Anand, and T. Dang. Chirp: A new classifier based on composite hypercubes on iterated random projections. In ACM KDD, 2011.
-
(2011)
ACM KDD
-
-
Wilkinson, L.1
Anand, A.2
Dang, T.3
-
48
-
-
33749522841
-
High-dimensional visual analytics: Interactive exploration guided by pairwise views of point distributions
-
L. Wilkinson, A. Anand, and R. Grossman. High-dimensional visual analytics: Interactive exploration guided by pairwise views of point distributions. IEEE Transactions on Visualization and Computer Graphics, 12(6):1363-1372, 2006.
-
(2006)
IEEE Transactions on Visualization and Computer Graphics
, vol.12
, Issue.6
, pp. 1363-1372
-
-
Wilkinson, L.1
Anand, A.2
Grossman, R.3
|