메뉴 건너뛰기




Volumn , Issue , 2012, Pages 43-52

Visual pattern discovery using random projections

Author keywords

High dimensional Data; Random Projections

Indexed keywords

ESSENTIAL ELEMENTS; EXPLORATORY DATA ANALYSIS; FEATURE SUBSPACE; HIGH DIMENSIONAL DATA; HIGH DIMENSIONAL SPACES; HIGH-DIMENSIONAL DATA SPACE; MULTI-DIMENSIONAL SPACE; MULTIVARIATE VISUALIZATION; PROJECTION PURSUITS; RANDOM PROJECTIONS; SCORE FUNCTION; VISUAL PATTERN;

EID: 84872963385     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/VAST.2012.6400490     Document Type: Conference Paper
Times cited : (37)

References (49)
  • 1
    • 0034819702 scopus 로고    scopus 로고
    • Database-friendly random projections
    • ACM
    • D. Achlioptas. Database-friendly random projections. In Proc. of ACM SIGMOD, pages 274-281. ACM, 2001.
    • (2001) Proc. of ACM SIGMOD , pp. 274-281
    • Achlioptas, D.1
  • 3
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In Proc. of ACM SIGMOD, pages 94-105, 1998.
    • (1998) Proc. of ACM SIGMOD , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 5
    • 84855799777 scopus 로고    scopus 로고
    • Perception-based visual quality measures
    • G. Albuquerque, M. Eisemann, and M. Magnor. Perception-based visual quality measures. In IEEE VAST, pages 13-20, 2011.
    • (2011) IEEE VAST , pp. 13-20
    • Albuquerque, G.1    Eisemann, M.2    Magnor, M.3
  • 8
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15:1373-1396, 2003.
    • (2003) Neural Computation , vol.15 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 9
    • 0035789317 scopus 로고    scopus 로고
    • Random projection in dimensionality reduction: Applications to image and text data
    • E. Bingham and H. Mannila. Random projection in dimensionality reduction: applications to image and text data. In Proc. of ACM SIGKDD, pages 245-250, 2001.
    • (2001) Proc. of ACM SIGKDD , pp. 245-250
    • Bingham, E.1    Mannila, H.2
  • 10
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers
    • New York, NY, USA, ACM
    • B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. In Proc. of COLT, pages 144-152, New York, NY, USA, 1992. ACM.
    • (1992) Proc. of COLT , pp. 144-152
    • Boser, B.E.1    Guyon, I.M.2    Vapnik, V.N.3
  • 12
    • 72849129962 scopus 로고    scopus 로고
    • Two-stage framework for visualization of clustered high dimensional data
    • J. Choo, S. Bohn, and H. Park. Two-stage framework for visualization of clustered high dimensional data. In IEEE VAST, pages 67-74, 2009.
    • (2009) IEEE VAST , pp. 67-74
    • Choo, J.1    Bohn, S.2    Park, H.3
  • 14
    • 1942517297 scopus 로고    scopus 로고
    • Random projection for high dimensional data clustering: A cluster ensemble approach
    • X. Z. Fern and C. E. Brodley. Random projection for high dimensional data clustering: A cluster ensemble approach. In ICML'03, pages 186-193, 2003.
    • (2003) ICML'03 , pp. 186-193
    • Fern, X.Z.1    Brodley, C.E.2
  • 15
    • 63249106662 scopus 로고    scopus 로고
    • Experiments with random projections for machine learning
    • New York, NY, USA, ACM
    • D. Fradkin and D. Madigan. Experiments with random projections for machine learning. In Proc. of ACM KDD, pages 517-522, New York, NY, USA, 2003. ACM.
    • (2003) Proc. of ACM KDD , pp. 517-522
    • Fradkin, D.1    Madigan, D.2
  • 16
    • 0016102310 scopus 로고
    • A projection pursuit algorithm for exploratory data analysis
    • J. H. Friedman and J.W. Tukey. A projection pursuit algorithm for exploratory data analysis. IEEE Transactions on Computers, C-23:881-890, 1974.
    • (1974) IEEE Transactions on Computers , vol.C-23 , pp. 881-890
    • Friedman, J.H.1    Tukey, J.W.2
  • 19
  • 22
    • 84996229696 scopus 로고    scopus 로고
    • A rank-by-feature framework for interactive exploration of multidimensional data
    • March
    • S. J. and B. Shneiderman. A rank-by-feature framework for interactive exploration of multidimensional data. Information Visualization, 4:96-113, March 2005.
    • (2005) Information Visualization , vol.4 , pp. 96-113
    • Shneiderman, B.1
  • 24
    • 0029178509 scopus 로고
    • Landgrebe. Projection pursuit for high dimensional feature reduction: Paralleland sequential approaches
    • L. O. Jimenez and D. A. Landgrebe. Projection pursuit for high dimensional feature reduction: paralleland sequential approaches. In Geoscience and Remote Sensing Symposium, volume 1, pages 148-150, 1995.
    • (1995) Geoscience and Remote Sensing Symposium , vol.1 , pp. 148-150
    • Jimenez, L.O.1    A, D.2
  • 27
    • 0033897901 scopus 로고    scopus 로고
    • Designing pixel-oriented visualization techniques: Theory and applications
    • D. A. Keim. Designing pixel-oriented visualization techniques: Theory and applications. IEEE TVCG, 6(1), 2000.
    • (2000) IEEE TVCG , vol.6 , Issue.1
    • Keim, D.A.1
  • 28
    • 0012565294 scopus 로고
    • A nonmetric variety of linear factor analysis
    • J. Kruskal and R. Shepard. A nonmetric variety of linear factor analysis. Psychometrika, 39:123-157, 1974.
    • (1974) Psychometrika , vol.39 , pp. 123-157
    • Kruskal, J.1    Shepard, R.2
  • 30
    • 78649400333 scopus 로고    scopus 로고
    • Maximum likelihood estimation of intrinsic dimension
    • L. K. Saul, Y. Weiss, and L. Bottou, editors, Cambridge, MA, MIT Press
    • E. Levina and P. J. Bickel. Maximum likelihood estimation of intrinsic dimension. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 17, pages 777-784, Cambridge, MA, 2005. MIT Press.
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 777-784
    • Levina, E.1    Bickel, P.J.2
  • 32
    • 0002773602 scopus 로고
    • Random numbers fall mainly in the planes
    • G. Marsaglia. Random numbers fall mainly in the planes. In Proc. National Academy of Sciences, volume 61, pages 25-28, 1968.
    • (1968) Proc. National Academy of Sciences , vol.61 , pp. 25-28
    • Marsaglia, G.1
  • 33
    • 84872973357 scopus 로고    scopus 로고
    • Nonlinear approach in classification visualization and evaluation
    • V. Osinska and P. Baia. Nonlinear approach in classification visualization and evaluation. In Congress ISKO, '09, pages 257-270, 2009.
    • (2009) Congress ISKO, '09 , pp. 257-270
    • Osinska, V.1    Baia, P.2
  • 34
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • June
    • L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data: a review. SIGKDD Explor. Newsl., 6(1):90-105, June 2004.
    • (2004) SIGKDD Explor. Newsl. , vol.6 , Issue.1 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 35
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2:559-572, 1901.
    • (1901) Philosophical Magazine , vol.2 , pp. 559-572
    • Pearson, K.1
  • 37
    • 68549110238 scopus 로고    scopus 로고
    • Selecting good views of high-dimensional data using class consistency
    • M. Sips, B. Neubert, J. P. Lewis, and P. Hanrahan. Selecting good views of high-dimensional data using class consistency. Computer Graphics Forum, 28(3):831-838, 2009.
    • (2009) Computer Graphics Forum , vol.28 , Issue.3 , pp. 831-838
    • Sips, M.1    Neubert, B.2    Lewis, J.P.3    Hanrahan, P.4
  • 38
    • 41349089460 scopus 로고    scopus 로고
    • Jigsaw: Supporting investigative analysis through interactive visualization
    • J. Stasko, C. Gorg, Z. Liu, and K. Singhal. Jigsaw: Supporting investigative analysis through interactive visualization. In Proc. of the IEEE VAST, pages 131-138, 2007.
    • (2007) Proc. of the IEEE VAST , pp. 131-138
    • Stasko, J.1    Gorg, C.2    Liu, Z.3    Singhal, K.4
  • 39
    • 0037560966 scopus 로고    scopus 로고
    • Estimating the cluster tree of a density by analyzing the minimal spanning tree of a sample
    • W. Stuetzle. Estimating the cluster tree of a density by analyzing the minimal spanning tree of a sample. Journal of Classification, 20:25-47, 2003.
    • (2003) Journal of Classification , vol.20 , pp. 25-47
    • Stuetzle, W.1
  • 42
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 44
    • 0000640338 scopus 로고
    • Mathematics and the picturing of data
    • Vancouver, Canada, Canadian Mathematical Congress
    • J. W. Tukey. Mathematics and the picturing of data. In Pro. of the International Congress of Mathematicians, pages 523-531, Vancouver, Canada, 1974. Canadian Mathematical Congress.
    • (1974) Pro. of the International Congress of Mathematicians , pp. 523-531
    • Tukey, J.W.1
  • 45
    • 80955143380 scopus 로고    scopus 로고
    • Brushing dimensions - A dual visual analysis model for high-dimensional data
    • C. Turkay, P. Filzmoser, and H. Hauser. Brushing dimensions - a dual visual analysis model for high-dimensional data. IEEE TVCG, 17(12):2591-2599, 2011.
    • (2011) IEEE TVCG , vol.17 , Issue.12 , pp. 2591-2599
    • Turkay, C.1    Filzmoser, P.2    Hauser, H.3
  • 46
    • 84872930828 scopus 로고    scopus 로고
    • Chirp: A new classifier based on composite hypercubes on iterated random projections
    • L. Wilkinson, A. Anand, and T. Dang. Chirp: A new classifier based on composite hypercubes on iterated random projections. In ACM KDD, 2011.
    • (2011) ACM KDD
    • Wilkinson, L.1    Anand, A.2    Dang, T.3
  • 48
    • 33749522841 scopus 로고    scopus 로고
    • High-dimensional visual analytics: Interactive exploration guided by pairwise views of point distributions
    • L. Wilkinson, A. Anand, and R. Grossman. High-dimensional visual analytics: Interactive exploration guided by pairwise views of point distributions. IEEE Transactions on Visualization and Computer Graphics, 12(6):1363-1372, 2006.
    • (2006) IEEE Transactions on Visualization and Computer Graphics , vol.12 , Issue.6 , pp. 1363-1372
    • Wilkinson, L.1    Anand, A.2    Grossman, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.