-
2
-
-
84873775015
-
Bagshaped macromolecules-a new outlook on bacterial cell walls
-
Weidel, W. & H. Pelzer 1964. Bagshaped macromolecules-a new outlook on bacterial cell walls. Adv. Enzymol. 26: 193-232.
-
(1964)
Adv. Enzymol.
, vol.26
, pp. 193-232
-
-
Weidel, W.1
Pelzer, H.2
-
3
-
-
75349104798
-
Architecture of peptidoglycan: more data and more models
-
Vollmer, W. & S.J. Seligman 2010. Architecture of peptidoglycan: more data and more models. Trends Microbiol. 18: 59-66.
-
(2010)
Trends Microbiol.
, vol.18
, pp. 59-66
-
-
Vollmer, W.1
Seligman, S.J.2
-
4
-
-
0015462556
-
Peptidoglycan types of bacterial cell walls and their taxonomic implications
-
Schleifer, K.H. & O. Kandler 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36: 407-477.
-
(1972)
Bacteriol. Rev.
, vol.36
, pp. 407-477
-
-
Schleifer, K.H.1
Kandler, O.2
-
5
-
-
0015611501
-
Covalent binding of lipid to protein. Diglyceride and amide-linked fatty acid at the N-terminal end of the murein-lipoprotein of the Escherichia coli outer membrane
-
Hantke, K. & V. Braun 1973. Covalent binding of lipid to protein. Diglyceride and amide-linked fatty acid at the N-terminal end of the murein-lipoprotein of the Escherichia coli outer membrane. Eur. J. Biochem. 34: 284-296.
-
(1973)
Eur. J. Biochem.
, vol.34
, pp. 284-296
-
-
Hantke, K.1
Braun, V.2
-
6
-
-
0033618622
-
Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall
-
Mazmanian, S.K., G. Liu, H. Ton-That, et al. 1999. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285: 760-763.
-
(1999)
Science
, vol.285
, pp. 760-763
-
-
Mazmanian, S.K.1
Liu, G.2
Ton-That, H.3
-
7
-
-
39149102149
-
Structural variation in the glycan strands of bacterial peptidoglycan
-
Vollmer, W. 2008. Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol. Rev. 32: 287-306.
-
(2008)
FEMS Microbiol. Rev.
, vol.32
, pp. 287-306
-
-
Vollmer, W.1
-
8
-
-
84857491427
-
Identification of genetic determinants and enzymes involved with the amidation of glutamic acid residues in the peptidoglycan of Staphylococcus aureus
-
Figueiredo, T.A., R.G. Sobral, A.M. Ludovice, et al. 2012. Identification of genetic determinants and enzymes involved with the amidation of glutamic acid residues in the peptidoglycan of Staphylococcus aureus. PLoS Pathog. 8: e1002508.
-
(2012)
PLoS Pathog.
, vol.8
-
-
Figueiredo, T.A.1
Sobral, R.G.2
Ludovice, A.M.3
-
9
-
-
84857494112
-
Identification and in vitro analysis of the GatD/MurT enzyme-complex catalyzing lipid II amidation in Staphylococcus aureus
-
Münch, D., T. Roemer, S.H. Lee, et al. 2012. Identification and in vitro analysis of the GatD/MurT enzyme-complex catalyzing lipid II amidation in Staphylococcus aureus. PLoS Pathog. 8: e1002509.
-
(2012)
PLoS Pathog.
, vol.8
-
-
Münch, D.1
Roemer, T.2
Lee, S.H.3
-
10
-
-
4444220092
-
The architecture of the murein (peptidoglycan) in Gram-negative bacteria: vertical scaffold or horizontal layer(s)
-
Vollmer, W. & J.-V. Höltje 2004. The architecture of the murein (peptidoglycan) in Gram-negative bacteria: vertical scaffold or horizontal layer(s) J. Bacteriol. 186: 5978-5987.
-
(2004)
J. Bacteriol.
, vol.186
, pp. 5978-5987
-
-
Vollmer, W.1
Höltje, J.-V.2
-
11
-
-
57749083521
-
Molecular organization of Gram-negative peptidoglycan
-
Gan, L., S. Chen & G.J. Jensen 2008. Molecular organization of Gram-negative peptidoglycan. Proc. Natl. Acad. Sci. USA 105: 18953-18957.
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 18953-18957
-
-
Gan, L.1
Chen, S.2
Jensen, G.J.3
-
12
-
-
0023677844
-
The composition of the murein of Escherichia coli
-
Glauner, B., J.-V. Höltje & U. Schwarz 1988. The composition of the murein of Escherichia coli. J. Biol. Chem. 263: 10088-10095.
-
(1988)
J. Biol. Chem.
, vol.263
, pp. 10088-10095
-
-
Glauner, B.1
Höltje, J.-V.2
Schwarz, U.3
-
13
-
-
0025012287
-
Isolation and separation of the glycan strands from murein of Escherichia coli by reversed-phase high-performance liquid chromatography
-
Harz, H., K. Burgdorf & J.-V. Höltje 1990. Isolation and separation of the glycan strands from murein of Escherichia coli by reversed-phase high-performance liquid chromatography. Anal Biochem. 190: 120-128.
-
(1990)
Anal Biochem.
, vol.190
, pp. 120-128
-
-
Harz, H.1
Burgdorf, K.2
Höltje, J.-V.3
-
14
-
-
0037494988
-
Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell
-
Daniel, R.A. & J. Errington 2003. Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113: 767-776.
-
(2003)
Cell
, vol.113
, pp. 767-776
-
-
Daniel, R.A.1
Errington, J.2
-
15
-
-
0037858060
-
Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli
-
Höltje, J.-V. 1998. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev 62: 181-203.
-
(1998)
Microbiol. Mol. Biol. Rev
, vol.62
, pp. 181-203
-
-
Höltje, J.-V.1
-
16
-
-
84863116870
-
Polar growth in the alphaproteobacterial order Rhizobiales
-
Brown, P.J., M.A. de Pedro, D.T. Kysela, et al. 2012. Polar growth in the alphaproteobacterial order Rhizobiales. Proc. Natl. Acad. Sci. USA 109: 1697-1701.
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 1697-1701
-
-
Brown, P.J.1
De Pedro, M.A.2
Kysela, D.T.3
-
17
-
-
79960083390
-
Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria
-
Dominguez-Escobar, J., A. Chastanet, A.H. Crevenna, et al. 2011. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333: 225-228.
-
(2011)
Science
, vol.333
, pp. 225-228
-
-
Dominguez-Escobar, J.1
Chastanet, A.2
Crevenna, A.H.3
-
18
-
-
79960075043
-
Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis
-
Garner, E.C., R. Bernard, W. Wang, et al. 2011. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333: 222-225.
-
(2011)
Science
, vol.333
, pp. 222-225
-
-
Garner, E.C.1
Bernard, R.2
Wang, W.3
-
19
-
-
80052431295
-
The bacterial actin MreB rotates, and rotation depends on cell-wall assembly
-
van Teeffelen, S., S. Wang, L. Furchtgott, et al. 2011. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc. Natl. Acad. Sci. USA 108: 15822-15827.
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 15822-15827
-
-
Van Teeffelen, S.1
Wang, S.2
Furchtgott, L.3
-
20
-
-
27644540151
-
FtsZ and the division of prokaryotic cells and organelles
-
Margolin, W. 2005. FtsZ and the division of prokaryotic cells and organelles. Nat. Rev. Mol. Cell. Biol. 6: 862-871.
-
(2005)
Nat. Rev. Mol. Cell. Biol.
, vol.6
, pp. 862-871
-
-
Margolin, W.1
-
21
-
-
34248364322
-
The tubulin homologue FtsZ contributes to cell elongation by guiding cell wall precursor synthesis in Caulobacter crescentus
-
Aaron, M., G. Charbon, H. Lam, et al. 2007. The tubulin homologue FtsZ contributes to cell elongation by guiding cell wall precursor synthesis in Caulobacter crescentus. Mol. Microbiol. 64: 938-952.
-
(2007)
Mol. Microbiol.
, vol.64
, pp. 938-952
-
-
Aaron, M.1
Charbon, G.2
Lam, H.3
-
23
-
-
78650497005
-
Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases
-
Paradis-Bleau, C., M. Markovski, T. Uehara, et al. 2010. Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases. Cell 143: 1110-1120.
-
(2010)
Cell
, vol.143
, pp. 1110-1120
-
-
Paradis-Bleau, C.1
Markovski, M.2
Uehara, T.3
-
24
-
-
78650431707
-
Regulation of peptidoglycan synthesis by outer membrane proteins
-
Typas, A., M. Banzhaf, v. B. van Saparoea, et al. 2010. Regulation of peptidoglycan synthesis by outer membrane proteins. Cell 143: 1097-1109.
-
(2010)
Cell
, vol.143
, pp. 1097-1109
-
-
Typas, A.1
Banzhaf, M.2
Van Saparoea, V.B.3
-
25
-
-
80052486494
-
Chemical-biological studies of subcellular organization in bacteria
-
Foss, M.H., Y.J. Eun & D.B. Weibel 2011. Chemical-biological studies of subcellular organization in bacteria. Biochemistry 50: 7719-7734.
-
(2011)
Biochemistry
, vol.50
, pp. 7719-7734
-
-
Foss, M.H.1
Eun, Y.J.2
Weibel, D.B.3
-
26
-
-
84857549874
-
Targeting the assembly of bacterial cell division protein FtsZ with small molecules
-
Schaffner-Barbero, C., M. Martin-Fontecha, P. Chacon, et al. 2012. Targeting the assembly of bacterial cell division protein FtsZ with small molecules. ACS Chem. Biol. 7: 269-277.
-
(2012)
ACS Chem. Biol.
, vol.7
, pp. 269-277
-
-
Schaffner-Barbero, C.1
Martin-Fontecha, M.2
Chacon, P.3
-
27
-
-
73649122749
-
An oldie but a goodie-cell wall biosynthesis as antibiotic target pathway
-
Schneider, T. & H.G. Sahl 2010. An oldie but a goodie-cell wall biosynthesis as antibiotic target pathway. Int. J. Med. Microbiol. 300: 161-169.
-
(2010)
Int. J. Med. Microbiol.
, vol.300
, pp. 161-169
-
-
Schneider, T.1
Sahl, H.G.2
-
28
-
-
33750376659
-
The prokaryotic cytoskeleton: a putative target for inhibitors and antibiotics
-
Vollmer, W. 2006. The prokaryotic cytoskeleton: a putative target for inhibitors and antibiotics Appl. Microbiol. Biotechnol. 73: 37-47.
-
(2006)
Appl. Microbiol. Biotechnol.
, vol.73
, pp. 37-47
-
-
Vollmer, W.1
-
30
-
-
39149123173
-
The biosynthesis of peptidoglycan lipid-linked intermediates
-
Bouhss, A., A.E. Trunkfield, T.D. Bugg, et al. 2008. The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiol. Rev. 32: 208-233.
-
(2008)
FEMS Microbiol. Rev.
, vol.32
, pp. 208-233
-
-
Bouhss, A.1
Trunkfield, A.E.2
Bugg, T.D.3
-
32
-
-
79955007775
-
Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane
-
Mohammadi, T., V. van Dam, R. Sijbrandi, et al. 2011. Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO J. 30: 1425-1432.
-
(2011)
EMBO J.
, vol.30
, pp. 1425-1432
-
-
Mohammadi, T.1
Van Dam, V.2
Sijbrandi, R.3
-
33
-
-
36148959323
-
Analysis of glycan polymers produced by peptidoglycan glycosyltransferases
-
Barrett, D., T.S. Wang, Y. Yuan, et al. 2007. Analysis of glycan polymers produced by peptidoglycan glycosyltransferases. J. Biol. Chem. 282: 31964-31971.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 31964-31971
-
-
Barrett, D.1
Wang, T.S.2
Yuan, Y.3
-
34
-
-
74849096125
-
The role of the substrate lipid in processive glycan polymerization by the peptidoglycan glycosyltransferases
-
Perlstein, D.L., T.S. Wang, E.H. Doud, et al. 2010. The role of the substrate lipid in processive glycan polymerization by the peptidoglycan glycosyltransferases. J. Am. Chem. Soc. 132: 48-49.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 48-49
-
-
Perlstein, D.L.1
Wang, T.S.2
Doud, E.H.3
-
35
-
-
33947132188
-
Structural insight into the transglycosylation step of bacterial cell-wall biosynthesis
-
Lovering, A.L., L.H. de Castro, D. Lim, et al. 2007. Structural insight into the transglycosylation step of bacterial cell-wall biosynthesis. Science 315: 1402-1405.
-
(2007)
Science
, vol.315
, pp. 1402-1405
-
-
Lovering, A.L.1
De Castro, L.H.2
Lim, D.3
-
36
-
-
67049087759
-
Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli
-
Sung, M.T., Y.T. Lai, C.Y. Huang, et al. 2009. Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli. Proc. Natl. Acad. Sci. USA 106: 8824-8829.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 8824-8829
-
-
Sung, M.T.1
Lai, Y.T.2
Huang, C.Y.3
-
37
-
-
39149088656
-
The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis
-
Sauvage, E., F. Kerff, M. Terrak, et al. 2008. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32: 234-258.
-
(2008)
FEMS Microbiol. Rev.
, vol.32
, pp. 234-258
-
-
Sauvage, E.1
Kerff, F.2
Terrak, M.3
-
38
-
-
0021981840
-
Release of cell wall peptides into culture medium by exponentially growing Escherichia coli
-
Goodell, E.W. & U. Schwarz 1985. Release of cell wall peptides into culture medium by exponentially growing Escherichia coli. J. Bacteriol. 162: 391-397.
-
(1985)
J. Bacteriol.
, vol.162
, pp. 391-397
-
-
Goodell, E.W.1
Schwarz, U.2
-
39
-
-
44949258242
-
How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan)
-
Park, J.T. & T. Uehara 2008. How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan). Microbiol. Mol. Biol. Rev. 72: 211-227.
-
(2008)
Microbiol. Mol. Biol. Rev.
, vol.72
, pp. 211-227
-
-
Park, J.T.1
Uehara, T.2
-
40
-
-
0021337819
-
Molecular model for elongation of the murein sacculus of Escherichia coli
-
Burman, L.G. & J.T. Park 1984. Molecular model for elongation of the murein sacculus of Escherichia coli. Proc. Natl. Acad. Sci. USA 81: 1844-1848.
-
(1984)
Proc. Natl. Acad. Sci. USA
, vol.81
, pp. 1844-1848
-
-
Burman, L.G.1
Park, J.T.2
-
41
-
-
0002426524
-
"Three for one"- A simple growth mechanism that guarantees a precise copy of the thin, rod-shaped murein sacculus of Escherichia coli
-
In M. A. de Pedro, J.-V. Höltje & W. Löffelhardt, Eds.: - Plenum Press. New York-London
-
Höltje, J.-V. 1993. "Three for one"- A simple growth mechanism that guarantees a precise copy of the thin, rod-shaped murein sacculus of Escherichia coli. In Bacterial Growth and Lysis-Metabolism and Structure of the Bacterial Sacculus M. A. de Pedro, J.-V. Höltje & W. Löffelhardt, Eds.: 419-426. Plenum Press. New York-London
-
(1993)
Bacterial Growth and Lysis-Metabolism and Structure of the Bacterial Sacculus
, pp. 419-426
-
-
Höltje, J.-V.1
-
42
-
-
39749105962
-
The monofunctional glycosyltransferase of Escherichia coli localizes to the cell division site and interacts with penicillin-binding protein 3, FtsW, and FtsN
-
Derouaux, A., B. Wolf, C. Fraipont, et al. 2008. The monofunctional glycosyltransferase of Escherichia coli localizes to the cell division site and interacts with penicillin-binding protein 3, FtsW, and FtsN. J. Bacteriol. 190: 1831-1834.
-
(2008)
J. Bacteriol.
, vol.190
, pp. 1831-1834
-
-
Derouaux, A.1
Wolf, B.2
Fraipont, C.3
-
43
-
-
33748751261
-
In vitro synthesis of cross-linked murein and its attachment to sacculi by PBP1A from Escherichia coli
-
Born, P., E. Breukink & W. Vollmer 2006. In vitro synthesis of cross-linked murein and its attachment to sacculi by PBP1A from Escherichia coli. J. Biol. Chem. 281: 26985-26993.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 26985-26993
-
-
Born, P.1
Breukink, E.2
Vollmer, W.3
-
44
-
-
0025168851
-
Growth pattern of the murein sacculus of Escherichia coli
-
Glauner, B. & J.-V. Höltje 1990. Growth pattern of the murein sacculus of Escherichia coli. J. Biol. Chem 265: 18988-18996.
-
(1990)
J. Biol. Chem
, vol.265
, pp. 18988-18996
-
-
Glauner, B.1
Höltje, J.-V.2
-
45
-
-
0035179069
-
Differential responses of Escherichia coli cells expressing cytoplasmic domain mutants of penicillin-binding protein 1b after impairment of penicillin-binding proteins 1a and 3
-
Chalut, C., X. Charpentier, M.H. Remy, et al. 2001. Differential responses of Escherichia coli cells expressing cytoplasmic domain mutants of penicillin-binding protein 1b after impairment of penicillin-binding proteins 1a and 3. J. Bacteriol. 183: 200-206.
-
(2001)
J. Bacteriol.
, vol.183
, pp. 200-206
-
-
Chalut, C.1
Charpentier, X.2
Remy, M.H.3
-
46
-
-
0028082052
-
Artifactual processing of penicillin-binding proteins 7 and 1b by the OmpT protease of Escherichia coli
-
Henderson, T.A., P.M. Dombrosky & K.D. Young 1994. Artifactual processing of penicillin-binding proteins 7 and 1b by the OmpT protease of Escherichia coli. J. Bacteriol. 176: 256-259.
-
(1994)
J. Bacteriol.
, vol.176
, pp. 256-259
-
-
Henderson, T.A.1
Dombrosky, P.M.2
Young, K.D.3
-
47
-
-
27844575191
-
In vitro murein peptidoglycan synthesis by dimers of the bifunctional transglycosylase-transpeptidase PBP1B from Escherichia coli
-
Bertsche, U., E. Breukink, T. Kast, et al. 2005. In vitro murein peptidoglycan synthesis by dimers of the bifunctional transglycosylase-transpeptidase PBP1B from Escherichia coli. J. Biol. Chem 280: 38096-38101.
-
(2005)
J. Biol. Chem
, vol.280
, pp. 38096-38101
-
-
Bertsche, U.1
Breukink, E.2
Kast, T.3
-
48
-
-
0025990145
-
Penicillin-binding protein 1B of Escherichia coli exists in dimeric forms
-
Zijderveld, C.A., M.E. Aarsman, T. den Blaauwen, et al. 1991. Penicillin-binding protein 1B of Escherichia coli exists in dimeric forms. J. Bacteriol. 173: 5740-5746.
-
(1991)
J. Bacteriol.
, vol.173
, pp. 5740-5746
-
-
Zijderveld, C.A.1
Aarsman, M.E.2
Den Blaauwen, T.3
-
49
-
-
0032874101
-
The catalytic, glycosyl transferase and acyl transferase modules of the cell wall peptidoglycan-polymerizing penicillin-binding protein 1b of Escherichia coli
-
Terrak, M., T.K. Ghosh, J. van Heijenoort, et al. 1999. The catalytic, glycosyl transferase and acyl transferase modules of the cell wall peptidoglycan-polymerizing penicillin-binding protein 1b of Escherichia coli. Mol. Microbiol. 34: 350-364.
-
(1999)
Mol. Microbiol.
, vol.34
, pp. 350-364
-
-
Terrak, M.1
Ghosh, T.K.2
Van Heijenoort, J.3
-
50
-
-
57649134967
-
Importance of the conserved residues in the peptidoglycan glycosyltransferase module of the class A penicillin-binding protein 1b of Escherichia coli
-
Terrak, M., E. Sauvage, A. Derouaux, et al. 2008. Importance of the conserved residues in the peptidoglycan glycosyltransferase module of the class A penicillin-binding protein 1b of Escherichia coli. J. Biol. Chem 283: 28464-28470.
-
(2008)
J. Biol. Chem
, vol.283
, pp. 28464-28470
-
-
Terrak, M.1
Sauvage, E.2
Derouaux, A.3
-
51
-
-
84862772767
-
Cooperativity of peptidoglycan synthases active in bacterial cell elongation
-
Banzhaf, M., B. van den Berg van Saparoea, M. Terrak, et al. 2012. Cooperativity of peptidoglycan synthases active in bacterial cell elongation. Mol. Microbiol. 85: 179-194.
-
(2012)
Mol. Microbiol.
, vol.85
, pp. 179-194
-
-
Banzhaf, M.1
Van Den Berg Van Saparoea, B.2
Terrak, M.3
-
52
-
-
84861193683
-
The membrane anchor of penicillin-binding protein PBP2a from Streptococcus pneumoniae influences peptidoglycan chain length
-
Helassa, N., W. Vollmer, E. Breukink, et al. 2012. The membrane anchor of penicillin-binding protein PBP2a from Streptococcus pneumoniae influences peptidoglycan chain length. FEBS J 279: 2071-2081.
-
(2012)
FEBS J
, vol.279
, pp. 2071-2081
-
-
Helassa, N.1
Vollmer, W.2
Breukink, E.3
-
53
-
-
0029808359
-
The non-penicillin-binding module of the tripartite penicillin-binding protein 3 of Escherichia coli is required for folding and/or stability of the penicillin-binding module and the membrane-anchoring module confers cell septation activity on the folded structure
-
Goffin, C., C. Fraipont, J. Ayala, et al. 1996. The non-penicillin-binding module of the tripartite penicillin-binding protein 3 of Escherichia coli is required for folding and/or stability of the penicillin-binding module and the membrane-anchoring module confers cell septation activity on the folded structure. J. Bacteriol. 178: 5402-5409.
-
(1996)
J. Bacteriol.
, vol.178
, pp. 5402-5409
-
-
Goffin, C.1
Fraipont, C.2
Ayala, J.3
-
54
-
-
78649658087
-
Bridging cell wall biosynthesis and bacterial morphogenesis
-
Mattei, P.J., D. Neves & A. Dessen 2010. Bridging cell wall biosynthesis and bacterial morphogenesis. Curr. Op. Struct. Biol. 20: 749-755.
-
(2010)
Curr. Op. Struct. Biol.
, vol.20
, pp. 749-755
-
-
Mattei, P.J.1
Neves, D.2
Dessen, A.3
-
55
-
-
0037244586
-
Penicillin-binding protein PBP2 of Escherichia coli localizes preferentially in the lateral wall and at mid-cell in comparison with the old cell pole
-
den Blaauwen, T., M.E. Aarsman, N.O. Vischer, et al. 2003. Penicillin-binding protein PBP2 of Escherichia coli localizes preferentially in the lateral wall and at mid-cell in comparison with the old cell pole. Mol. Microbiol. 47: 539-547.
-
(2003)
Mol. Microbiol.
, vol.47
, pp. 539-547
-
-
Den Blaauwen, T.1
Aarsman, M.E.2
Vischer, N.O.3
-
56
-
-
84864010982
-
Osmolality-dependent relocation of penicillin-binding protein PBP2 to the division site in Caulobacter crescentus
-
Hocking, J., R. Priyadarshini, C.N. Takacs, et al. 2012. Osmolality-dependent relocation of penicillin-binding protein PBP2 to the division site in Caulobacter crescentus. J. Bacteriol. 194: 3116-3127.
-
(2012)
J. Bacteriol.
, vol.194
, pp. 3116-3127
-
-
Hocking, J.1
Priyadarshini, R.2
Takacs, C.N.3
-
57
-
-
80053250366
-
Characterization of the elongasome core PBP2 : MreC complex of Helicobacter pylori
-
El Ghachi, M., P.J. Mattei, C. Ecobichon, et al. 2011. Characterization of the elongasome core PBP2 : MreC complex of Helicobacter pylori. Mol. Microbiol. 82: 68-86.
-
(2011)
Mol. Microbiol.
, vol.82
, pp. 68-86
-
-
El Ghachi, M.1
Mattei, P.J.2
Ecobichon, C.3
-
58
-
-
12344306119
-
The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex
-
Kruse, T., J. Bork-Jensen & K. Gerdes 2005. The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex. Mol. Microbiol. 55: 78-89.
-
(2005)
Mol. Microbiol.
, vol.55
, pp. 78-89
-
-
Kruse, T.1
Bork-Jensen, J.2
Gerdes, K.3
-
59
-
-
0030881627
-
Localization of the Escherichia coli cell division protein Ftsl (PBP3) to the division site and cell pole
-
Weiss, D.S., K. Pogliano, M. Carson, et al. 1997. Localization of the Escherichia coli cell division protein Ftsl (PBP3) to the division site and cell pole. Mol. Microbiol. 25: 671-681.
-
(1997)
Mol. Microbiol.
, vol.25
, pp. 671-681
-
-
Weiss, D.S.1
Pogliano, K.2
Carson, M.3
-
60
-
-
0030921172
-
The bimodular G57-V577 polypeptide chain of the class B penicillin-binding protein 3 of Escherichia coli catalyzes peptide bond formation from thiolesters and does not catalyze glycan chain polymerization from the lipid II intermediate
-
Adam, M., C. Fraipont, N. Rhazi, et al. 1997. The bimodular G57-V577 polypeptide chain of the class B penicillin-binding protein 3 of Escherichia coli catalyzes peptide bond formation from thiolesters and does not catalyze glycan chain polymerization from the lipid II intermediate. J. Bacteriol. 179: 6005-6009.
-
(1997)
J. Bacteriol.
, vol.179
, pp. 6005-6009
-
-
Adam, M.1
Fraipont, C.2
Rhazi, N.3
-
61
-
-
50049104157
-
Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli
-
Vollmer, W. & U. Bertsche 2008. Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. Biochim. Biophys. Acta 1778: 1714-1734.
-
(2008)
Biochim. Biophys. Acta
, vol.1778
, pp. 1714-1734
-
-
Vollmer, W.1
Bertsche, U.2
-
62
-
-
84862016534
-
Calcium-dependent complex formation between PBP2 and lytic transglycosylase SltB1 of Pseudomonas aeruginosa
-
Nikolaidis, I., T. Izore, V. Job, et al. 2012. Calcium-dependent complex formation between PBP2 and lytic transglycosylase SltB1 of Pseudomonas aeruginosa. Microb. Drug Resist 18: 298-305.
-
(2012)
Microb. Drug Resist
, vol.18
, pp. 298-305
-
-
Nikolaidis, I.1
Izore, T.2
Job, V.3
-
63
-
-
33748333182
-
Interaction between two murein (peptidoglycan) synthases, PBP3 and PBP1B, in Escherichia coli
-
Bertsche, U., T. Kast, B. Wolf, et al. 2006. Interaction between two murein (peptidoglycan) synthases, PBP3 and PBP1B, in Escherichia coli. Mol. Microbiol. 61: 675-690.
-
(2006)
Mol. Microbiol.
, vol.61
, pp. 675-690
-
-
Bertsche, U.1
Kast, T.2
Wolf, B.3
-
64
-
-
0025987074
-
Identification of a new mutation in Escherichia coli that suppresses a pbpB (Ts) phenotype in the presence of penicillin-binding protein 1B
-
Garcia del Portillo, F., M.A. de Pedro & J.A. Ayala 1991. Identification of a new mutation in Escherichia coli that suppresses a pbpB (Ts) phenotype in the presence of penicillin-binding protein 1B. FEMS Microbiol. Lett 68: 7-13.
-
(1991)
FEMS Microbiol. Lett
, vol.68
, pp. 7-13
-
-
Garcia Del Portillo, F.1
De Pedro, M.A.2
Ayala, J.A.3
-
65
-
-
84855889658
-
From the regulation of peptidoglycan synthesis to bacterial growth and morphology
-
Typas, A., M. Banzhaf, C.A. Gross, et al. 2012. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat. Rev. Microbiol. 10: 123-136.
-
(2012)
Nat. Rev. Microbiol.
, vol.10
, pp. 123-136
-
-
Typas, A.1
Banzhaf, M.2
Gross, C.A.3
-
66
-
-
0026059127
-
FtsZ ring structure associated with division in Escherichia coli
-
Bi, E. & J. Lutkenhaus 1991. FtsZ ring structure associated with division in Escherichia coli. Nature 354: 161-164.
-
(1991)
Nature
, vol.354
, pp. 161-164
-
-
Bi, E.1
Lutkenhaus, J.2
-
67
-
-
2642593025
-
Crystal structure of the bacterial cell-division protein FtsZ
-
Löwe, J. & L.A. Amos 1998. Crystal structure of the bacterial cell-division protein FtsZ. Nature 391: 203-206.
-
(1998)
Nature
, vol.391
, pp. 203-206
-
-
Löwe, J.1
Amos, L.A.2
-
68
-
-
0032518656
-
Dynamic assembly of FtsZ regulated by GTP hydrolysis
-
Mukherjee, A. & J. Lutkenhaus 1998. Dynamic assembly of FtsZ regulated by GTP hydrolysis. EMBO J. 17: 462-469.
-
(1998)
EMBO J.
, vol.17
, pp. 462-469
-
-
Mukherjee, A.1
Lutkenhaus, J.2
-
69
-
-
78650078263
-
FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one
-
Erickson, H.P., D.E. Anderson & M. Osawa 2010. FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol. Mol. Biol. Rev. 74: 504-528.
-
(2010)
Microbiol. Mol. Biol. Rev.
, vol.74
, pp. 504-528
-
-
Erickson, H.P.1
Anderson, D.E.2
Osawa, M.3
-
70
-
-
36248938686
-
The structure of FtsZ filaments in vivo suggests a force-generating role in cell division
-
Li, Z., M.J. Trimble, Y.V. Brun, et al. 2007. The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J. 26: 4694-4708.
-
(2007)
EMBO J.
, vol.26
, pp. 4694-4708
-
-
Li, Z.1
Trimble, M.J.2
Brun, Y.V.3
-
71
-
-
4344652693
-
Assembly dynamics of FtsZ rings in Bacillus subtilis and Escherichia coli and effects of FtsZ-regulating proteins
-
Anderson, D.E., F.J. Gueiros-Filho & H.P. Erickson 2004. Assembly dynamics of FtsZ rings in Bacillus subtilis and Escherichia coli and effects of FtsZ-regulating proteins. J. Bacteriol. 186: 5775-5781.
-
(2004)
J. Bacteriol.
, vol.186
, pp. 5775-5781
-
-
Anderson, D.E.1
Gueiros-Filho, F.J.2
Erickson, H.P.3
-
72
-
-
84861427754
-
Depolymerization dynamics of individual filaments of bacterial cytoskeletal protein FtsZ
-
Mateos-Gil, P., A. Paez, I. Horger, et al. 2012. Depolymerization dynamics of individual filaments of bacterial cytoskeletal protein FtsZ. Proc. Natl. Acad. Sci. USA 109: 8133-8138.
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 8133-8138
-
-
Mateos-Gil, P.1
Paez, A.2
Horger, I.3
-
73
-
-
0035794706
-
Dynamic localization cycle of the cell division regulator MinE in Escherichia coli
-
Hale, C.A., H. Meinhardt & P.A. de Boer 2001. Dynamic localization cycle of the cell division regulator MinE in Escherichia coli. EMBO J. 20: 1563-1572.
-
(2001)
EMBO J.
, vol.20
, pp. 1563-1572
-
-
Hale, C.A.1
Meinhardt, H.2
de Boer, P.A.3
-
74
-
-
0033609139
-
Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli
-
Raskin, D.M. & P.A.J. de Boer 1999. Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc. Natl. Acad. Sci. USA 96: 4971-4976.
-
(1999)
Proc. Natl. Acad. Sci. USA
, vol.96
, pp. 4971-4976
-
-
Raskin, D.M.1
de Boer, P.A.J.2
-
75
-
-
79961135028
-
The Min oscillator uses MinD-dependent conformational changes in MinE to spatially regulate cytokinesis
-
Park, K.T., W. Wu, K.P. Battaile, et al. 2011. The Min oscillator uses MinD-dependent conformational changes in MinE to spatially regulate cytokinesis. Cell 146: 396-407.
-
(2011)
Cell
, vol.146
, pp. 396-407
-
-
Park, K.T.1
Wu, W.2
Battaile, K.P.3
-
76
-
-
19444386428
-
SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli
-
Bernhardt, T.G. & P.A. de Boer 2005. SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol. Cell 18: 555-564.
-
(2005)
Mol. Cell
, vol.18
, pp. 555-564
-
-
Bernhardt, T.G.1
de Boer, P.A.2
-
77
-
-
2942752105
-
Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis
-
Wu, L.J. & J. Errington 2004. Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117: 915-925.
-
(2004)
Cell
, vol.117
, pp. 915-925
-
-
Wu, L.J.1
Errington, J.2
-
78
-
-
79952741894
-
Nucleoid occlusion factor SlmA is a DNA-activated FtsZ polymerization antagonist
-
Cho, H., H.R. McManus, S.L. Dove, et al. 2011. Nucleoid occlusion factor SlmA is a DNA-activated FtsZ polymerization antagonist. Proc. Natl. Acad. Sci. USA 108: 3773-3778.
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 3773-3778
-
-
Cho, H.1
McManus, H.R.2
Dove, S.L.3
-
79
-
-
78650910561
-
Molecular mechanism by which the nucleoid occlusion factor, SlmA, keeps cytokinesis in check
-
Tonthat, N.K., S.T. Arold, B.F. Pickering, et al. 2011. Molecular mechanism by which the nucleoid occlusion factor, SlmA, keeps cytokinesis in check. EMBO J. 30: 154-164.
-
(2011)
EMBO J.
, vol.30
, pp. 154-164
-
-
Tonthat, N.K.1
Arold, S.T.2
Pickering, B.F.3
-
80
-
-
67650435786
-
Noc protein binds to specific DNA sequences to coordinate cell division with chromosome segregation
-
Wu, L.J., S. Ishikawa, Y. Kawai, et al. 2009. Noc protein binds to specific DNA sequences to coordinate cell division with chromosome segregation. EMBO J. 28: 1940-1952.
-
(2009)
EMBO J.
, vol.28
, pp. 1940-1952
-
-
Wu, L.J.1
Ishikawa, S.2
Kawai, Y.3
-
81
-
-
83855160828
-
Nucleoid occlusion and bacterial cell division
-
Wu, L.J. & J. Errington 2012. Nucleoid occlusion and bacterial cell division. Nat. Rev. Microbiol. 10: 8-12.
-
(2012)
Nat. Rev. Microbiol.
, vol.10
, pp. 8-12
-
-
Wu, L.J.1
Errington, J.2
-
82
-
-
0020054652
-
On the precision and accuracy achieved by Escherichia coli cells at fission about their middle
-
Trueba, F.J. 1982. On the precision and accuracy achieved by Escherichia coli cells at fission about their middle. Arch. Microbiol. 131: 55-59.
-
(1982)
Arch. Microbiol.
, vol.131
, pp. 55-59
-
-
Trueba, F.J.1
-
83
-
-
0032895234
-
FtsZ ring clusters in min and partition mutants: role of both the Min system and the nucleoid in regulating FtsZ ring localization
-
Yu, X.C. & W. Margolin 1999. FtsZ ring clusters in min and partition mutants: role of both the Min system and the nucleoid in regulating FtsZ ring localization. Mol. Microbiol. 32: 315-326.
-
(1999)
Mol. Microbiol.
, vol.32
, pp. 315-326
-
-
Yu, X.C.1
Margolin, W.2
-
84
-
-
84860822838
-
Robustness and accuracy of cell division in Escherichia coli in diverse cell shapes
-
Mannik, J., F. Wu, F.J. Hol, et al. 2012. Robustness and accuracy of cell division in Escherichia coli in diverse cell shapes. Proc. Natl. Acad. Sci. USA 109: 6957-6962.
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 6957-6962
-
-
Mannik, J.1
Wu, F.2
Hol, F.J.3
-
85
-
-
15944362608
-
Maturation of the Escherichia coli divisome occurs in two steps
-
Aarsman, M.E., A. Piette, C. Fraipont, et al. 2005. Maturation of the Escherichia coli divisome occurs in two steps. Mol. Microbiol. 55: 1631-1645.
-
(2005)
Mol. Microbiol.
, vol.55
, pp. 1631-1645
-
-
Aarsman, M.E.1
Piette, A.2
Fraipont, C.3
-
86
-
-
79958782165
-
Assembly of the Caulobacter cell division machine
-
Goley, E.D., Y.C. Yeh, S.H. Hong, et al. 2011. Assembly of the Caulobacter cell division machine. Mol. Microbiol. 80: 1680-1698.
-
(2011)
Mol. Microbiol.
, vol.80
, pp. 1680-1698
-
-
Goley, E.D.1
Yeh, Y.C.2
Hong, S.H.3
-
87
-
-
0035853803
-
Genetic analysis of the Escherichia coli FtsZ.ZipA interaction in the yeast two-hybrid system. Characterization of FtsZ residues essential for the interactions with ZipA and with FtsA
-
Haney, S.A., E. Glasfeld, C. Hale, et al. 2001. Genetic analysis of the Escherichia coli FtsZ.ZipA interaction in the yeast two-hybrid system. Characterization of FtsZ residues essential for the interactions with ZipA and with FtsA. J. Biol. Chem. 276: 11980-11987.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 11980-11987
-
-
Haney, S.A.1
Glasfeld, E.2
Hale, C.3
-
88
-
-
15744385269
-
Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA
-
Pichoff, S. & J. Lutkenhaus 2005. Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA. Mol. Microbiol. 55: 1722-1734.
-
(2005)
Mol. Microbiol.
, vol.55
, pp. 1722-1734
-
-
Pichoff, S.1
Lutkenhaus, J.2
-
89
-
-
84857738215
-
Key role of two terminal domains in the bidirectional polymerization of FtsA protein
-
Krupka, M., G. Rivas, A.I. Rico, et al. 2012. Key role of two terminal domains in the bidirectional polymerization of FtsA protein. J. Biol. Chem. 287: 7756-7765.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 7756-7765
-
-
Krupka, M.1
Rivas, G.2
Rico, A.I.3
-
90
-
-
84861151969
-
FtsA forms actin-like protofilaments
-
Szwedziak, P., Q. Wang, S.M. Freund, et al. 2012. FtsA forms actin-like protofilaments. EMBO J. 31: 2249-2260.
-
(2012)
EMBO J.
, vol.31
, pp. 2249-2260
-
-
Szwedziak, P.1
Wang, Q.2
Freund, S.M.3
-
91
-
-
77955449195
-
Membrane potential is important for bacterial cell division
-
Strahl, H. & L.W. Hamoen 2010. Membrane potential is important for bacterial cell division. Proc. Natl. Acad. Sci. USA 107: 12281-12286.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 12281-12286
-
-
Strahl, H.1
Hamoen, L.W.2
-
92
-
-
84864018985
-
Identification of ZapD as a cell division factor that promotes the assembly of FtsZ in Escherichia coli
-
Durand-Heredia, J., E. Rivkin, G. Fan, et al. 2012. Identification of ZapD as a cell division factor that promotes the assembly of FtsZ in Escherichia coli. J. Bacteriol. 194: 3189-3198.
-
(2012)
J. Bacteriol.
, vol.194
, pp. 3189-3198
-
-
Durand-Heredia, J.1
Rivkin, E.2
Fan, G.3
-
93
-
-
0036791675
-
A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ
-
Gueiros-Filho, F.J. & R. Losick 2002. A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ. Genes Dev. 16: 2544-2556.
-
(2002)
Genes Dev.
, vol.16
, pp. 2544-2556
-
-
Gueiros-Filho, F.J.1
Losick, R.2
-
94
-
-
4344620117
-
The crystal structure of ZapA and its modulation of FtsZ polymerisation
-
Low, H.H., M.C. Moncrieffe & J. Lowe 2004. The crystal structure of ZapA and its modulation of FtsZ polymerisation. J. Mol. Biol. 341: 839-852.
-
(2004)
J. Mol. Biol.
, vol.341
, pp. 839-852
-
-
Low, H.H.1
Moncrieffe, M.C.2
Lowe, J.3
-
95
-
-
41749083933
-
Novel coiled-coil cell division factor ZapB stimulates Z ring assembly and cell division
-
Ebersbach, G., E. Galli, J. Moller-Jensen, et al. 2008. Novel coiled-coil cell division factor ZapB stimulates Z ring assembly and cell division. Mol. Microbiol. 68: 720-735.
-
(2008)
Mol. Microbiol.
, vol.68
, pp. 720-735
-
-
Ebersbach, G.1
Galli, E.2
Moller-Jensen, J.3
-
96
-
-
84855881444
-
FtsZ-ZapA-ZapB interactome of Escherichia coli
-
Galli, E. & K. Gerdes 2012. FtsZ-ZapA-ZapB interactome of Escherichia coli. J. Bacteriol. 194: 292-302.
-
(2012)
J. Bacteriol.
, vol.194
, pp. 292-302
-
-
Galli, E.1
Gerdes, K.2
-
97
-
-
77953494296
-
Spatial resolution of two bacterial cell division proteins: ZapA recruits ZapB to the inner face of the Z-ring
-
Galli, E. & K. Gerdes 2010. Spatial resolution of two bacterial cell division proteins: ZapA recruits ZapB to the inner face of the Z-ring. Mol. Microbiol. 76: 1514-1526.
-
(2010)
Mol. Microbiol.
, vol.76
, pp. 1514-1526
-
-
Galli, E.1
Gerdes, K.2
-
98
-
-
84864147092
-
A MatP-divisome interaction coordinates chromosome segregation with cell division in E. coli
-
Espeli, O., R. Borne, P. Dupaigne, et al. 2012. A MatP-divisome interaction coordinates chromosome segregation with cell division in E. coli. EMBO J. 31: 3198-3211.
-
(2012)
EMBO J.
, vol.31
, pp. 3198-3211
-
-
Espeli, O.1
Borne, R.2
Dupaigne, P.3
-
99
-
-
79952403634
-
Identification and characterization of ZapC, a stabilizer of the FtsZ ring in Escherichia coli
-
Durand-Heredia, J.M., H.H. Yu, S. De Carlo, et al. 2011. Identification and characterization of ZapC, a stabilizer of the FtsZ ring in Escherichia coli. J. Bacteriol. 193: 1405-1413.
-
(2011)
J. Bacteriol.
, vol.193
, pp. 1405-1413
-
-
Durand-Heredia, J.M.1
Yu, H.H.2
De Carlo, S.3
-
100
-
-
79952401787
-
Identification of Escherichia coli ZapC (YcbW) as a component of the division apparatus that binds and bundles FtsZ polymers
-
Hale, C.A., D. Shiomi, B. Liu, et al. 2011. Identification of Escherichia coli ZapC (YcbW) as a component of the division apparatus that binds and bundles FtsZ polymers. J. Bacteriol. 193: 1393-1404.
-
(2011)
J. Bacteriol.
, vol.193
, pp. 1393-1404
-
-
Hale, C.A.1
Shiomi, D.2
Liu, B.3
-
101
-
-
69249126551
-
Bacterial cell division: assembly, maintenance and disassembly of the Z ring
-
Adams, D.W. & J. Errington 2009. Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat. Rev. Microbiol. 7: 642-653.
-
(2009)
Nat. Rev. Microbiol.
, vol.7
, pp. 642-653
-
-
Adams, D.W.1
Errington, J.2
-
102
-
-
67549107869
-
ATP-binding site lesions in FtsE impair cell division
-
Arends, S.J., R.J. Kustusch & D.S. Weiss 2009. ATP-binding site lesions in FtsE impair cell division. J. Bacteriol. 191: 3772-3784.
-
(2009)
J. Bacteriol.
, vol.191
, pp. 3772-3784
-
-
Arends, S.J.1
Kustusch, R.J.2
Weiss, D.S.3
-
103
-
-
34247859209
-
Interaction between cell division proteins FtsE and FtsZ
-
Corbin, B.D., Y. Wang, T.K. Beuria, et al. 2007. Interaction between cell division proteins FtsE and FtsZ. J. Bacteriol. 189: 3026-3035.
-
(2007)
J. Bacteriol.
, vol.189
, pp. 3026-3035
-
-
Corbin, B.D.1
Wang, Y.2
Beuria, T.K.3
-
104
-
-
0032904859
-
Molecular characterization of Escherichia coli FtsE and FtsX
-
de Leeuw, E, B. Graham, G.J. Phillips, et al. 1999. Molecular characterization of Escherichia coli FtsE and FtsX. Mol. Microbiol. 31: 983-993.
-
(1999)
Mol. Microbiol.
, vol.31
, pp. 983-993
-
-
De Leeuw, E.1
Graham, B.2
Phillips, G.J.3
-
105
-
-
7744230898
-
Z-ring-independent interaction between a subdomain of FtsA and late septation proteins as revealed by a polar recruitment assay
-
Corbin, B.D., B. Geissler, M. Sadasivam, et al. 2004. Z-ring-independent interaction between a subdomain of FtsA and late septation proteins as revealed by a polar recruitment assay. J. Bacteriol. 186: 7736-7744.
-
(2004)
J. Bacteriol.
, vol.186
, pp. 7736-7744
-
-
Corbin, B.D.1
Geissler, B.2
Sadasivam, M.3
-
106
-
-
33845944955
-
Role of FtsEX in cell division of Escherichia coli: viability of ftsEX mutants is dependent on functional SufI or high osmotic strength
-
Reddy, M. 2007. Role of FtsEX in cell division of Escherichia coli: viability of ftsEX mutants is dependent on functional SufI or high osmotic strength. J. Bacteriol. 189: 98-108.
-
(2007)
J. Bacteriol.
, vol.189
, pp. 98-108
-
-
Reddy, M.1
-
107
-
-
0034740520
-
FtsQ, FtsL and FtsI require FtsK, but not FtsN, for co-localization with FtsZ during Escherichia coli cell division
-
Chen, J.C. & J. Beckwith 2001. FtsQ, FtsL and FtsI require FtsK, but not FtsN, for co-localization with FtsZ during Escherichia coli cell division. Mol. Microbiol. 42: 395-413.
-
(2001)
Mol. Microbiol.
, vol.42
, pp. 395-413
-
-
Chen, J.C.1
Beckwith, J.2
-
108
-
-
0037783310
-
The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway
-
Bernhardt, T.G. & P.A. de Boer 2003. The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway. Mol. Microbiol. 48: 1171-1182.
-
(2003)
Mol. Microbiol.
, vol.48
, pp. 1171-1182
-
-
Bernhardt, T.G.1
de Boer, P.A.2
-
109
-
-
77951470447
-
Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis
-
Uehara, T., K.R. Parzych, T. Dinh, et al. 2010. Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. EMBO J. 29: 1412-1422.
-
(2010)
EMBO J.
, vol.29
, pp. 1412-1422
-
-
Uehara, T.1
Parzych, K.R.2
Dinh, T.3
-
110
-
-
67749117916
-
LytM-domain factors are required for daughter cell separation and rapid ampicillin-induced lysis in Escherichia coli
-
Uehara, T., T. Dinh & T.G. Bernhardt 2009. LytM-domain factors are required for daughter cell separation and rapid ampicillin-induced lysis in Escherichia coli. J. Bacteriol. 191: 5094-5107.
-
(2009)
J. Bacteriol.
, vol.191
, pp. 5094-5107
-
-
Uehara, T.1
Dinh, T.2
Bernhardt, T.G.3
-
111
-
-
0346252349
-
Use of a two-hybrid assay to study the assembly of a complex multicomponent protein machinery: bacterial septosome differentiation
-
Di Lallo, G., M. Fagioli, D. Barionovi, et al. 2003. Use of a two-hybrid assay to study the assembly of a complex multicomponent protein machinery: bacterial septosome differentiation. Microbiology 149: 3353-3359.
-
(2003)
Microbiology
, vol.149
, pp. 3353-3359
-
-
Di Lallo, G.1
Fagioli, M.2
Barionovi, D.3
-
112
-
-
51349131943
-
The Escherichia coli FtsK functional domains involved in its interaction with its divisome protein partners
-
Grenga, L., G. Luzi, L. Paolozzi, et al. 2008. The Escherichia coli FtsK functional domains involved in its interaction with its divisome protein partners. FEMS Microbiol. Lett 287: 163-167.
-
(2008)
FEMS Microbiol. Lett
, vol.287
, pp. 163-167
-
-
Grenga, L.1
Luzi, G.2
Paolozzi, L.3
-
113
-
-
15244361175
-
Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis
-
Karimova, G., N. Dautin & D. Ladant 2005. Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J. Bacteriol. 187: 2233-2243.
-
(2005)
J. Bacteriol.
, vol.187
, pp. 2233-2243
-
-
Karimova, G.1
Dautin, N.2
Ladant, D.3
-
114
-
-
0037169328
-
FtsK Is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases
-
Aussel, L., F.X. Barre, M. Aroyo, et al. 2002. FtsK Is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases. Cell 108: 195-205.
-
(2002)
Cell
, vol.108
, pp. 195-205
-
-
Aussel, L.1
Barre, F.X.2
Aroyo, M.3
-
115
-
-
49349104892
-
Molecular mechanism of sequence-directed DNA loading and translocation by FtsK
-
Löwe, J., A. Ellonen, M.D. Allen, et al. 2008. Molecular mechanism of sequence-directed DNA loading and translocation by FtsK. Mol. Cell 31: 498-509.
-
(2008)
Mol. Cell
, vol.31
, pp. 498-509
-
-
Löwe, J.1
Ellonen, A.2
Allen, M.D.3
-
116
-
-
26944444295
-
Evidence for functional overlap among multiple bacterial cell division proteins: compensating for the loss of FtsK
-
Geissler, B. & W. Margolin 2005. Evidence for functional overlap among multiple bacterial cell division proteins: compensating for the loss of FtsK. Mol. Microbiol. 58: 596-612.
-
(2005)
Mol. Microbiol.
, vol.58
, pp. 596-612
-
-
Geissler, B.1
Margolin, W.2
-
117
-
-
0031786575
-
Role of the C terminus of FtsK in Escherichia coli chromosome segregation
-
Yu, X.C., E.K. Weihe & W. Margolin 1998. Role of the C terminus of FtsK in Escherichia coli chromosome segregation. J. Bacteriol. 180: 6424-6428.
-
(1998)
J. Bacteriol.
, vol.180
, pp. 6424-6428
-
-
Yu, X.C.1
Weihe, E.K.2
Margolin, W.3
-
118
-
-
2942570076
-
A complex of the Escherichia coli cell division proteins FtsL, FtsB and FtsQ forms independently of its localization to the septal region
-
Buddelmeijer, N. & J. Beckwith 2004. A complex of the Escherichia coli cell division proteins FtsL, FtsB and FtsQ forms independently of its localization to the septal region. Mol. Microbiol. 52: 1315-1327.
-
(2004)
Mol. Microbiol.
, vol.52
, pp. 1315-1327
-
-
Buddelmeijer, N.1
Beckwith, J.2
-
119
-
-
0036176969
-
Analysis of ftsQ mutant alleles in Escherichia coli: complementation, septal localization, and recruitment of downstream cell division proteins
-
Chen, J.C., M. Minev & J. Beckwith 2002. Analysis of ftsQ mutant alleles in Escherichia coli: complementation, septal localization, and recruitment of downstream cell division proteins. J. Bacteriol. 184: 695-705.
-
(2002)
J. Bacteriol.
, vol.184
, pp. 695-705
-
-
Chen, J.C.1
Minev, M.2
Beckwith, J.3
-
120
-
-
39149129764
-
Structural and mutational analysis of the cell division protein FtsQ
-
van den Ent, F., T.M. Vinkenvleugel, A. Ind, et al. 2008. Structural and mutational analysis of the cell division protein FtsQ. Mol. Microbiol. 68: 110-123.
-
(2008)
Mol. Microbiol.
, vol.68
, pp. 110-123
-
-
Van Den Ent, F.1
Vinkenvleugel, T.M.2
Ind, A.3
-
121
-
-
77952577603
-
Multiple interaction domains in FtsL, a protein component of the widely conserved bacterial FtsLBQ cell division complex
-
Gonzalez, M.D., E.A. Akbay, D. Boyd, et al. 2010. Multiple interaction domains in FtsL, a protein component of the widely conserved bacterial FtsLBQ cell division complex. J. Bacteriol. 192: 2757-2768.
-
(2010)
J. Bacteriol.
, vol.192
, pp. 2757-2768
-
-
Gonzalez, M.D.1
Akbay, E.A.2
Boyd, D.3
-
122
-
-
79958292223
-
A model for the Escherichia coli FtsB/FtsL/FtsQ cell division complex
-
Villanelo, F., A. Ordenes, J. Brunet, et al. 2011. A model for the Escherichia coli FtsB/FtsL/FtsQ cell division complex. BMC Struct. Biol 11: 28.
-
(2011)
BMC Struct. Biol
, vol.11
, pp. 28
-
-
Villanelo, F.1
Ordenes, A.2
Brunet, J.3
-
123
-
-
70350437278
-
Central domain of DivIB caps the C-terminal regions of the FtsL/DivIC coiled-coil rod
-
Masson, S., T. Kern, A. Le Gouellec, et al. 2009. Central domain of DivIB caps the C-terminal regions of the FtsL/DivIC coiled-coil rod. J. Biol. Chem. 284: 27687-27700.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 27687-27700
-
-
Masson, S.1
Kern, T.2
Le Gouellec, A.3
-
124
-
-
33745195461
-
Premature targeting of cell division proteins to midcell reveals hierarchies of protein interactions involved in divisome assembly
-
Goehring, N.W., M.D. Gonzalez & J. Beckwith 2006. Premature targeting of cell division proteins to midcell reveals hierarchies of protein interactions involved in divisome assembly. Mol. Microbiol. 61: 33-45.
-
(2006)
Mol. Microbiol.
, vol.61
, pp. 33-45
-
-
Goehring, N.W.1
Gonzalez, M.D.2
Beckwith, J.3
-
125
-
-
0037195381
-
Topological characterization of the essential Escherichia coli cell division protein FtsW
-
Lara, B. & J.A. Ayala 2002. Topological characterization of the essential Escherichia coli cell division protein FtsW. FEMS Microbiol. Lett 216: 23-32.
-
(2002)
FEMS Microbiol. Lett
, vol.216
, pp. 23-32
-
-
Lara, B.1
Ayala, J.A.2
-
126
-
-
77954376358
-
Direct interactions of early and late assembling division proteins in Escherichia coli cells resolved by FRET
-
Alexeeva, S., T.W. Gadella, Jr., J. Verheul, et al. 2010. Direct interactions of early and late assembling division proteins in Escherichia coli cells resolved by FRET. Mol. Microbiol. 77: 384-398.
-
(2010)
Mol. Microbiol.
, vol.77
, pp. 384-398
-
-
Alexeeva, S.1
Gadella Jr., T.W.2
Verheul, J.3
-
127
-
-
78650738448
-
The integral membrane FtsW protein and peptidoglycan synthase PBP3 form a subcomplex in Escherichia coli
-
Fraipont, C., S. Alexeeva, B. Wolf, et al. 2011. The integral membrane FtsW protein and peptidoglycan synthase PBP3 form a subcomplex in Escherichia coli. Microbiology 157: 251-259.
-
(2011)
Microbiology
, vol.157
, pp. 251-259
-
-
Fraipont, C.1
Alexeeva, S.2
Wolf, B.3
-
128
-
-
0036155122
-
The Escherichia coli cell division protein FtsW is required to recruit its cognate transpeptidase, FtsI (PBP3), to the division site
-
Mercer, K.L. & D.S. Weiss 2002. The Escherichia coli cell division protein FtsW is required to recruit its cognate transpeptidase, FtsI (PBP3), to the division site. J. Bacteriol. 184: 904-912.
-
(2002)
J. Bacteriol.
, vol.184
, pp. 904-912
-
-
Mercer, K.L.1
Weiss, D.S.2
-
129
-
-
37548998632
-
The essential cell division protein FtsN interacts with the murein (peptidoglycan) synthase PBP1B in Escherichia coli
-
Müller, P., C. Ewers, U. Bertsche, et al. 2007. The essential cell division protein FtsN interacts with the murein (peptidoglycan) synthase PBP1B in Escherichia coli. J. Biol. Chem 282: 36394-36402.
-
(2007)
J. Biol. Chem
, vol.282
, pp. 36394-36402
-
-
Müller, P.1
Ewers, C.2
Bertsche, U.3
-
130
-
-
53849143253
-
Localization of PBP3 in Caulobacter crescentus is highly dynamic and largely relies on its functional transpeptidase domain
-
Costa, T., R. Priyadarshini & C. Jacobs-Wagner 2008. Localization of PBP3 in Caulobacter crescentus is highly dynamic and largely relies on its functional transpeptidase domain. Mol. Microbiol. 70: 634-651.
-
(2008)
Mol. Microbiol.
, vol.70
, pp. 634-651
-
-
Costa, T.1
Priyadarshini, R.2
Jacobs-Wagner, C.3
-
131
-
-
65549119201
-
FtsN-like proteins are conserved components of the cell division machinery in proteobacteria
-
Möll, A. & M. Thanbichler 2009. FtsN-like proteins are conserved components of the cell division machinery in proteobacteria. Mol. Microbiol. 72: 1037-1053.
-
(2009)
Mol. Microbiol.
, vol.72
, pp. 1037-1053
-
-
Möll, A.1
Thanbichler, M.2
-
132
-
-
84861204197
-
The early divisome protein FtsA interacts directly through its 1c subdomain with the cytoplasmic domain of the late divisome protein FtsN
-
Busiek, K.K., J.M. Eraso, Y. Wang, et al. 2012. The early divisome protein FtsA interacts directly through its 1c subdomain with the cytoplasmic domain of the late divisome protein FtsN. J. Bacteriol. 194: 1989-2000.
-
(2012)
J. Bacteriol.
, vol.194
, pp. 1989-2000
-
-
Busiek, K.K.1
Eraso, J.M.2
Wang, Y.3
-
133
-
-
2442631494
-
Solution structure and domain architecture of the divisome protein FtsN
-
Yang, J.C., F. Van Den Ent, D. Neuhaus, et al. 2004. Solution structure and domain architecture of the divisome protein FtsN. Mol. Microbiol. 52: 651-660.
-
(2004)
Mol. Microbiol.
, vol.52
, pp. 651-660
-
-
Yang, J.C.1
Van Den Ent, F.2
Neuhaus, D.3
-
134
-
-
4944223117
-
Murein (peptidoglycan) binding property of the essential cell division protein FtsN from Escherichia coli
-
Ursinus, A., F. van den Ent, S. Brechtel, et al. 2004. Murein (peptidoglycan) binding property of the essential cell division protein FtsN from Escherichia coli. J. Bacteriol. 186: 6728-6737.
-
(2004)
J. Bacteriol.
, vol.186
, pp. 6728-6737
-
-
Ursinus, A.1
Van Den Ent, F.2
Brechtel, S.3
-
135
-
-
73849120353
-
Discovery and characterization of three new Escherichia coli septal ring proteins that contain a SPOR domain: DamX, DedD, and RlpA
-
Arends, S.J., K. Williams, R.J. Scott, et al. 2010. Discovery and characterization of three new Escherichia coli septal ring proteins that contain a SPOR domain: DamX, DedD, and RlpA. J. Bacteriol. 192: 242-255.
-
(2010)
J. Bacteriol.
, vol.192
, pp. 242-255
-
-
Arends, S.J.1
Williams, K.2
Scott, R.J.3
-
136
-
-
72449160318
-
Self-enhanced accumulation of FtsN at division sites and roles for other proteins with a SPOR domain (DamX, DedD, and RlpA) in Escherichia coli cell constriction
-
Gerding, M.A., B. Liu, F.O. Bendezu, et al. 2009. Self-enhanced accumulation of FtsN at division sites and roles for other proteins with a SPOR domain (DamX, DedD, and RlpA) in Escherichia coli cell constriction. J. Bacteriol. 191: 7383-7401.
-
(2009)
J. Bacteriol.
, vol.191
, pp. 7383-7401
-
-
Gerding, M.A.1
Liu, B.2
Bendezu, F.O.3
-
137
-
-
34249811807
-
An altered FtsA can compensate for the loss of essential cell division protein FtsN in Escherichia coli
-
Bernard, C.S., M. Sadasivam, D. Shiomi, et al. 2007. An altered FtsA can compensate for the loss of essential cell division protein FtsN in Escherichia coli. Mol. Microbiol. 64: 1289-1305.
-
(2007)
Mol. Microbiol.
, vol.64
, pp. 1289-1305
-
-
Bernard, C.S.1
Sadasivam, M.2
Shiomi, D.3
-
138
-
-
77951562635
-
Role of Escherichia coli FtsN protein in the assembly and stability of the cell division ring
-
Rico, A.I., M. Garcia-Ovalle, P. Palacios, et al. 2010. Role of Escherichia coli FtsN protein in the assembly and stability of the cell division ring. Mol. Microbiol. 76: 760-771.
-
(2010)
Mol. Microbiol.
, vol.76
, pp. 760-771
-
-
Rico, A.I.1
Garcia-Ovalle, M.2
Palacios, P.3
-
139
-
-
59149092772
-
The Escherichia coli cell division protein and model Tat substrate SufI (FtsP) localizes to the septal ring and has a multicopper oxidase-like structure
-
Tarry, M., S.J. Arends, P. Roversi, et al. 2009. The Escherichia coli cell division protein and model Tat substrate SufI (FtsP) localizes to the septal ring and has a multicopper oxidase-like structure. J. Mol. Biol. 386: 504-519.
-
(2009)
J. Mol. Biol.
, vol.386
, pp. 504-519
-
-
Tarry, M.1
Arends, S.J.2
Roversi, P.3
-
140
-
-
36549022665
-
Role of SufI (FtsP) in cell division of Escherichia coli: evidence for its involvement in stabilizing the assembly of the divisome
-
Samaluru, H., L. SaiSree & M. Reddy 2007. Role of SufI (FtsP) in cell division of Escherichia coli: evidence for its involvement in stabilizing the assembly of the divisome. J. Bacteriol. 189: 8044-8052.
-
(2007)
J. Bacteriol.
, vol.189
, pp. 8044-8052
-
-
Samaluru, H.1
SaiSree, L.2
Reddy, M.3
-
141
-
-
16244387909
-
Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space
-
Matias, V.R. & T.J. Beveridge 2005. Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol. Microbiol. 56: 240-251.
-
(2005)
Mol. Microbiol.
, vol.56
, pp. 240-251
-
-
Matias, V.R.1
Beveridge, T.J.2
-
142
-
-
33947282277
-
Cryo-electron microscopy of cell division in Staphylococcus aureus reveals a mid-zone between nascent cross walls
-
Matias, V.R. & T.J. Beveridge 2007. Cryo-electron microscopy of cell division in Staphylococcus aureus reveals a mid-zone between nascent cross walls. Mol. Microbiol. 64: 195-206.
-
(2007)
Mol. Microbiol.
, vol.64
, pp. 195-206
-
-
Matias, V.R.1
Beveridge, T.J.2
-
143
-
-
84859576482
-
Control of cell division in Streptococcus pneumoniae by the conserved Ser/Thr protein kinase StkP
-
Beilharz, K., L. Novakova, D. Fadda, et al. 2012. Control of cell division in Streptococcus pneumoniae by the conserved Ser/Thr protein kinase StkP. Proc. Natl. Acad. Sci. USA 109: E905-E913.
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
-
-
Beilharz, K.1
Novakova, L.2
Fadda, D.3
-
144
-
-
84856585868
-
Mutational dissection of the S/T-kinase StkP reveals crucial roles in cell division of Streptococcus pneumoniae
-
Fleurie, A., C. Cluzel, S. Guiral, et al. 2012. Mutational dissection of the S/T-kinase StkP reveals crucial roles in cell division of Streptococcus pneumoniae. Mol. Microbiol. 83: 746-758.
-
(2012)
Mol. Microbiol.
, vol.83
, pp. 746-758
-
-
Fleurie, A.1
Cluzel, C.2
Guiral, S.3
-
145
-
-
33750444279
-
Evolution of transmembrane protein kinases implicated in coordinating remodeling of gram-positive peptidoglycan: inside versus outside
-
Jones, G. & P. Dyson 2006. Evolution of transmembrane protein kinases implicated in coordinating remodeling of gram-positive peptidoglycan: inside versus outside. J. Bacteriol. 188: 7470-7476.
-
(2006)
J. Bacteriol.
, vol.188
, pp. 7470-7476
-
-
Jones, G.1
Dyson, P.2
-
146
-
-
0030876575
-
The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division
-
Edwards, D.H. & J. Errington 1997. The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol. Microbiol. 24: 905-915.
-
(1997)
Mol. Microbiol.
, vol.24
, pp. 905-915
-
-
Edwards, D.H.1
Errington, J.2
-
147
-
-
0037228462
-
Polar targeting of DivIVA in Bacillus subtilis is not directly dependent on FtsZ or PBP 2B
-
Hamoen, L.W. & J. Errington 2003. Polar targeting of DivIVA in Bacillus subtilis is not directly dependent on FtsZ or PBP 2B. J. Bacteriol. 185: 693-697.
-
(2003)
J. Bacteriol.
, vol.185
, pp. 693-697
-
-
Hamoen, L.W.1
Errington, J.2
-
148
-
-
0032213104
-
Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site
-
Marston, A.L., H.B. Thomaides, D.H. Edwards, et al. 1998. Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev 12: 3419-3430.
-
(1998)
Genes Dev
, vol.12
, pp. 3419-3430
-
-
Marston, A.L.1
Thomaides, H.B.2
Edwards, D.H.3
-
149
-
-
68249141791
-
Localisation of DivIVA by targeting to negatively curved membranes
-
Lenarcic, R., S. Halbedel, L. Visser, et al. 2009. Localisation of DivIVA by targeting to negatively curved membranes. EMBO J. 28: 2272-2282.
-
(2009)
EMBO J.
, vol.28
, pp. 2272-2282
-
-
Lenarcic, R.1
Halbedel, S.2
Visser, L.3
-
150
-
-
81055124808
-
EzrA contributes to the regulation of cell size in Staphylococcus aureus
-
Jorge, A.M., E. Hoiczyk, J.P. Gomes, et al. 2011. EzrA contributes to the regulation of cell size in Staphylococcus aureus. PloS One 6: e27542.
-
(2011)
PloS One
, vol.6
-
-
Jorge, A.M.1
Hoiczyk, E.2
Gomes, J.P.3
-
151
-
-
0033578438
-
Identification and characterization of a negative regulator of FtsZ ring formation in Bacillus subtilis
-
Levin, P.A., I.G. Kurtser & A.D. Grossman 1999. Identification and characterization of a negative regulator of FtsZ ring formation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 96: 9642-9647.
-
(1999)
Proc. Natl. Acad. Sci. USA
, vol.96
, pp. 9642-9647
-
-
Levin, P.A.1
Kurtser, I.G.2
Grossman, A.D.3
-
152
-
-
79954426522
-
Multiple essential roles for EzrA in cell division of Staphylococcus aureus
-
Steele, V.R., A.L. Bottomley, J. Garcia-Lara, et al. 2011. Multiple essential roles for EzrA in cell division of Staphylococcus aureus. Mol. Microbiol. 80: 542-555.
-
(2011)
Mol. Microbiol.
, vol.80
, pp. 542-555
-
-
Steele, V.R.1
Bottomley, A.L.2
Garcia-Lara, J.3
-
153
-
-
2442546546
-
EzrA prevents aberrant cell division by modulating assembly of the cytoskeletal protein FtsZ
-
Haeusser, D.P., R.L. Schwartz, A.M. Smith, et al. 2004. EzrA prevents aberrant cell division by modulating assembly of the cytoskeletal protein FtsZ. Mol. Microbiol. 52: 801-814.
-
(2004)
Mol. Microbiol.
, vol.52
, pp. 801-814
-
-
Haeusser, D.P.1
Schwartz, R.L.2
Smith, A.M.3
-
154
-
-
34648819672
-
A membrane protein, EzrA, regulates assembly dynamics of FtsZ by interacting with the C-terminal tail of FtsZ
-
Singh, J.K., R.D. Makde, V. Kumar, et al. 2007. A membrane protein, EzrA, regulates assembly dynamics of FtsZ by interacting with the C-terminal tail of FtsZ. Biochemistry 46: 11013-11022.
-
(2007)
Biochemistry
, vol.46
, pp. 11013-11022
-
-
Singh, J.K.1
Makde, R.D.2
Kumar, V.3
-
155
-
-
42549145631
-
Control of the cell elongation-division cycle by shuttling of PBP1 protein in Bacillus subtilis
-
Claessen, D., R. Emmins, L.W. Hamoen, et al. 2008. Control of the cell elongation-division cycle by shuttling of PBP1 protein in Bacillus subtilis. Mol. Microbiol. 68: 1029-1046.
-
(2008)
Mol. Microbiol.
, vol.68
, pp. 1029-1046
-
-
Claessen, D.1
Emmins, R.2
Hamoen, L.W.3
-
156
-
-
33645055098
-
SepF, a novel FtsZ-interacting protein required for a late step in cell division
-
Hamoen, L.W., J.C. Meile, W. de Jong, et al. 2006. SepF, a novel FtsZ-interacting protein required for a late step in cell division. Mol. Microbiol. 59: 989-999.
-
(2006)
Mol. Microbiol.
, vol.59
, pp. 989-999
-
-
Hamoen, L.W.1
Meile, J.C.2
de Jong, W.3
-
157
-
-
57649165574
-
SepF increases the assembly and bundling of FtsZ polymers and stabilizes FtsZ protofilaments by binding along its length
-
Singh, J.K., R.D. Makde, V. Kumar, et al. 2008. SepF increases the assembly and bundling of FtsZ polymers and stabilizes FtsZ protofilaments by binding along its length. J. Biol. Chem. 283: 31116-31124.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 31116-31124
-
-
Singh, J.K.1
Makde, R.D.2
Kumar, V.3
-
158
-
-
79551614816
-
Large ring polymers align FtsZ polymers for normal septum formation
-
Gundogdu, M.E., Y. Kawai, N. Pavlendova, et al. 2011. Large ring polymers align FtsZ polymers for normal septum formation. EMBO J. 30: 617-626.
-
(2011)
EMBO J.
, vol.30
, pp. 617-626
-
-
Gundogdu, M.E.1
Kawai, Y.2
Pavlendova, N.3
-
160
-
-
79960648176
-
Type VI secretion delivers bacteriolytic effectors to target cells
-
Russell, A.B., R.D. Hood, N.K. Bui, et al. 2011. Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475: 343-347.
-
(2011)
Nature
, vol.475
, pp. 343-347
-
-
Russell, A.B.1
Hood, R.D.2
Bui, N.K.3
-
161
-
-
84861126596
-
A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach
-
Russell, A.B., P. Singh, M. Brittnacher, et al. 2012. A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. Cell Host Microbe 11: 538-549.
-
(2012)
Cell Host Microbe
, vol.11
, pp. 538-549
-
-
Russell, A.B.1
Singh, P.2
Brittnacher, M.3
-
162
-
-
84861214451
-
Peptidoglycan-modifying enzyme Pgp1 is required for helical cell shape and pathogenicity traits in Campylobacter jejuni
-
Frirdich, E., J. Biboy, C. Adams, et al. 2012. Peptidoglycan-modifying enzyme Pgp1 is required for helical cell shape and pathogenicity traits in Campylobacter jejuni. PLoS Pathog. 8: e1002602.
-
(2012)
PLoS Pathog.
, vol.8
-
-
Frirdich, E.1
Biboy, J.2
Adams, C.3
-
163
-
-
0034006505
-
Penicillin binding protein 5 affects cell diameter, contour, and morphology of Escherichia coli
-
Nelson, D.E. & K.D. Young 2000. Penicillin binding protein 5 affects cell diameter, contour, and morphology of Escherichia coli. J. Bacteriol. 182: 1714-1721.
-
(2000)
J. Bacteriol.
, vol.182
, pp. 1714-1721
-
-
Nelson, D.E.1
Young, K.D.2
-
164
-
-
84861220120
-
Multiple peptidoglycan modification networks modulate Helicobacter pylori's cell shape, motility, and colonization potential
-
Sycuro, L.K., T.J. Wyckoff, J. Biboy, et al. 2012. Multiple peptidoglycan modification networks modulate Helicobacter pylori's cell shape, motility, and colonization potential. PLoS Pathog. 8: e1002603.
-
(2012)
PLoS Pathog.
, vol.8
-
-
Sycuro, L.K.1
Wyckoff, T.J.2
Biboy, J.3
-
165
-
-
84859443989
-
Escherichia coli low-molecular-weight penicillin-binding proteins help orient septal FtsZ, and their absence leads to asymmetric cell division and branching
-
Potluri, L.P., M.A. de Pedro & K.D. Young 2012. Escherichia coli low-molecular-weight penicillin-binding proteins help orient septal FtsZ, and their absence leads to asymmetric cell division and branching. Mol. Microbiol. 84: 203-224.
-
(2012)
Mol. Microbiol.
, vol.84
, pp. 203-224
-
-
Potluri, L.P.1
de Pedro, M.A.2
Young, K.D.3
-
166
-
-
46249130782
-
Physiological functions of D-alanine carboxypeptidases in Escherichia coli
-
Ghosh, A.S., C. Chowdhury & D.E. Nelson 2008. Physiological functions of D-alanine carboxypeptidases in Escherichia coli. Trends Microbiol. 16: 309-317.
-
(2008)
Trends Microbiol.
, vol.16
, pp. 309-317
-
-
Ghosh, A.S.1
Chowdhury, C.2
Nelson, D.E.3
-
167
-
-
77954375639
-
Septal and lateral wall localization of PBP5, the major D,D-carboxypeptidase of Escherichia coli, requires substrate recognition and membrane attachment
-
Potluri, L., A. Karczmarek, J. Verheul, et al. 2010. Septal and lateral wall localization of PBP5, the major D, D-carboxypeptidase of Escherichia coli, requires substrate recognition and membrane attachment. Mol. Microbiol. 77: 300-323.
-
(2010)
Mol. Microbiol.
, vol.77
, pp. 300-323
-
-
Potluri, L.1
Karczmarek, A.2
Verheul, J.3
-
168
-
-
0027991987
-
Penicillin-binding protein 7/8 of Escherichia coli is a DD-endopeptidase
-
Romeis, T. & J.-V. Höltje 1994. Penicillin-binding protein 7/8 of Escherichia coli is a DD-endopeptidase. Eur. J. Biochem. 224: 597-604.
-
(1994)
Eur. J. Biochem.
, vol.224
, pp. 597-604
-
-
Romeis, T.1
Höltje, J.-V.2
-
169
-
-
6344260684
-
Peptidoglycan amidase MepA is a LAS metallopeptidase
-
Marcyjaniak, M., S.G. Odintsov, I. Sabala, et al. 2004. Peptidoglycan amidase MepA is a LAS metallopeptidase. J. Biol. Chem. 279: 43982-43989.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 43982-43989
-
-
Marcyjaniak, M.1
Odintsov, S.G.2
Sabala, I.3
-
170
-
-
10044294976
-
Endopeptidase penicillin-binding proteins 4 and 7 play auxiliary roles in determining uniform morphology of Escherichia coli
-
Meberg, B.M., A.L. Paulson, R. Priyadarshini, et al. 2004. Endopeptidase penicillin-binding proteins 4 and 7 play auxiliary roles in determining uniform morphology of Escherichia coli. J. Bacteriol. 186: 8326-8336.
-
(2004)
J. Bacteriol.
, vol.186
, pp. 8326-8336
-
-
Meberg, B.M.1
Paulson, A.L.2
Priyadarshini, R.3
-
171
-
-
33746649568
-
Daughter cell separation by penicillin-binding proteins and peptidoglycan amidases in Escherichia coli
-
Priyadarshini, R., D.L. Popham & K.D. Young 2006. Daughter cell separation by penicillin-binding proteins and peptidoglycan amidases in Escherichia coli. J. Bacteriol. 188: 5345-5355.
-
(2006)
J. Bacteriol.
, vol.188
, pp. 5345-5355
-
-
Priyadarshini, R.1
Popham, D.L.2
Young, K.D.3
-
172
-
-
77953265009
-
Peptidoglycan crosslinking relaxation promotes Helicobacter pylori's helical shape and stomach colonization
-
Sycuro, L.K., Z. Pincus, K.D. Gutierrez, et al. 2010. Peptidoglycan crosslinking relaxation promotes Helicobacter pylori's helical shape and stomach colonization. Cell 141: 822-833.
-
(2010)
Cell
, vol.141
, pp. 822-833
-
-
Sycuro, L.K.1
Pincus, Z.2
Gutierrez, K.D.3
-
173
-
-
0016726181
-
Novel type of murein transglycosylase in Escherichia coli
-
Höltje, J.-V., D. Mirelman, N. Sharon, et al. 1975. Novel type of murein transglycosylase in Escherichia coli. J. Bacteriol. 124: 1067-1076.
-
(1975)
J. Bacteriol.
, vol.124
, pp. 1067-1076
-
-
Höltje, J.-V.1
Mirelman, D.2
Sharon, N.3
-
174
-
-
0027240681
-
Characterization of three different lytic transglycosylases in Escherichia coli
-
Romeis, T., W. Vollmer & J.-V. Höltje 1993. Characterization of three different lytic transglycosylases in Escherichia coli. FEMS Microbiol. Lett 111: 141-146.
-
(1993)
FEMS Microbiol. Lett
, vol.111
, pp. 141-146
-
-
Romeis, T.1
Vollmer, W.2
Höltje, J.-V.3
-
175
-
-
79953198237
-
High-resolution crystal structure of MltE, an outer membrane-anchored endolytic peptidoglycan lytic transglycosylase from Escherichia coli
-
Artola-Recolons, C., C. Carrasco-Lopez, L.I. Llarrull, et al. 2011. High-resolution crystal structure of MltE, an outer membrane-anchored endolytic peptidoglycan lytic transglycosylase from Escherichia coli. Biochemistry 50: 2384-2386.
-
(2011)
Biochemistry
, vol.50
, pp. 2384-2386
-
-
Artola-Recolons, C.1
Carrasco-Lopez, C.2
Llarrull, L.I.3
-
176
-
-
0342901668
-
Crystal structure of Escherichia coli lytic transglycosylase Slt35 reveals a lysozyme-like catalytic domain with an EF-hand
-
van Asselt, E.J., A.J. Dijkstra, K.H. Kalk, et al. 1999. Crystal structure of Escherichia coli lytic transglycosylase Slt35 reveals a lysozyme-like catalytic domain with an EF-hand. Structure 7: 1167-1180.
-
(1999)
Structure
, vol.7
, pp. 1167-1180
-
-
Van Asselt, E.J.1
Dijkstra, A.J.2
Kalk, K.H.3
-
177
-
-
0033609769
-
High resolution crystal structures of the Escherichia coli lytic transglycosylase Slt70 and its complex with a peptidoglycan fragment
-
van Asselt, E.J., A.M. Thunnissen & B.W. Dijkstra 1999. High resolution crystal structures of the Escherichia coli lytic transglycosylase Slt70 and its complex with a peptidoglycan fragment. J. Mol. Biol. 291: 877-898.
-
(1999)
J. Mol. Biol.
, vol.291
, pp. 877-898
-
-
van Asselt, E.J.1
Thunnissen, A.M.2
Dijkstra, B.W.3
-
178
-
-
24944507285
-
Crystal structure of MltA from Escherichia coli reveals a unique lytic transglycosylase fold
-
van Straaten, K.E., B.W. Dijkstra, W. Vollmer, et al. 2005. Crystal structure of MltA from Escherichia coli reveals a unique lytic transglycosylase fold. J. Mol. Biol. 352: 1068-1080.
-
(2005)
J. Mol. Biol.
, vol.352
, pp. 1068-1080
-
-
Van Straaten, K.E.1
Dijkstra, B.W.2
Vollmer, W.3
-
179
-
-
0028016512
-
Specific interaction of penicillin-binding proteins 3 and 7/8 with soluble lytic transglycosylase in Escherichia coli
-
Romeis, T. & J.-V. Höltje 1994. Specific interaction of penicillin-binding proteins 3 and 7/8 with soluble lytic transglycosylase in Escherichia coli. J. Biol. Chem 269: 21603-21607.
-
(1994)
J. Biol. Chem
, vol.269
, pp. 21603-21607
-
-
Romeis, T.1
Höltje, J.-V.2
-
180
-
-
0033525526
-
Demonstration of molecular interactions between the murein polymerase PBP1B, the lytic transglycosylase MltA, and the scaffolding protein MipA of Escherichia coli
-
Vollmer, W., M. von Rechenberg & J.-V. Höltje 1999. Demonstration of molecular interactions between the murein polymerase PBP1B, the lytic transglycosylase MltA, and the scaffolding protein MipA of Escherichia coli. J. Biol. Chem 274: 6726-6734.
-
(1999)
J. Biol. Chem
, vol.274
, pp. 6726-6734
-
-
Vollmer, W.1
von Rechenberg, M.2
Höltje, J.-V.3
-
181
-
-
0034945221
-
Involvement of N-acetylmuramyl-L-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli
-
Heidrich, C., M.F. Templin, A. Ursinus, et al. 2001. Involvement of N-acetylmuramyl-L-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli. Mol. Microbiol. 41: 167-178.
-
(2001)
Mol. Microbiol.
, vol.41
, pp. 167-178
-
-
Heidrich, C.1
Templin, M.F.2
Ursinus, A.3
-
182
-
-
77249102992
-
Specific structural features of the N-acetylmuramoyl-L-alanine amidase AmiD from Escherichia coli and mechanistic implications for enzymes of this family
-
Kerff, F., S. Petrella, F. Mercier, et al. 2010. Specific structural features of the N-acetylmuramoyl-L-alanine amidase AmiD from Escherichia coli and mechanistic implications for enzymes of this family. J. Mol. Biol. 397: 249-259.
-
(2010)
J. Mol. Biol.
, vol.397
, pp. 249-259
-
-
Kerff, F.1
Petrella, S.2
Mercier, F.3
-
183
-
-
34547613915
-
An anhydro-N-acetylmuramyl-L-alanine amidase with broad specificity tethered to the outer membrane of Escherichia coli
-
Uehara, T. & J.T. Park 2007. An anhydro-N-acetylmuramyl-L-alanine amidase with broad specificity tethered to the outer membrane of Escherichia coli. J. Bacteriol. 189: 5634-5641.
-
(2007)
J. Bacteriol.
, vol.189
, pp. 5634-5641
-
-
Uehara, T.1
Park, J.T.2
-
184
-
-
73249119525
-
Studying a cell division amidase using defined peptidoglycan substrates
-
Lupoli, T.J., T. Taniguchi, T.S. Wang, et al. 2009. Studying a cell division amidase using defined peptidoglycan substrates. J. Am. Chem. Soc. 131: 18230-18231.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 18230-18231
-
-
Lupoli, T.J.1
Taniguchi, T.2
Wang, T.S.3
-
185
-
-
0036843026
-
Effects of multiple deletions of murein hydrolases on viability, septum cleavage, and sensitivity to large toxic molecules in Escherichia coli
-
Heidrich, C., A. Ursinus, J. Berger, et al. 2002. Effects of multiple deletions of murein hydrolases on viability, septum cleavage, and sensitivity to large toxic molecules in Escherichia coli. J. Bacteriol. 184: 6093-6099.
-
(2002)
J. Bacteriol.
, vol.184
, pp. 6093-6099
-
-
Heidrich, C.1
Ursinus, A.2
Berger, J.3
-
186
-
-
16244380780
-
Susceptibility to antibiotics and beta-lactamase induction in murein hydrolase mutants of Escherichia coli
-
Korsak, D., S. Liebscher & W. Vollmer 2005. Susceptibility to antibiotics and beta-lactamase induction in murein hydrolase mutants of Escherichia coli. Antimicrob. Agents Chemother. 49: 1404-1409.
-
(2005)
Antimicrob. Agents Chemother.
, vol.49
, pp. 1404-1409
-
-
Korsak, D.1
Liebscher, S.2
Vollmer, W.3
-
187
-
-
44349107842
-
Growth of Escherichia coli: significance of peptidoglycan degradation during elongation and septation
-
Uehara, T. & J.T. Park 2008. Growth of Escherichia coli: significance of peptidoglycan degradation during elongation and septation. J. Bacteriol. 190: 3914-3922.
-
(2008)
J. Bacteriol.
, vol.190
, pp. 3914-3922
-
-
Uehara, T.1
Park, J.T.2
-
188
-
-
79955031537
-
A novel in vivo cell-wall labeling approach sheds new light on peptidoglycan synthesis in Escherichia coli
-
Olrichs, N.K., M.E. Aarsman, J. Verheul, et al. 2011. A novel in vivo cell-wall labeling approach sheds new light on peptidoglycan synthesis in Escherichia coli. Chem. Bio. Chem. 12: 1124-1133.
-
(2011)
Chem. Bio. Chem.
, vol.12
, pp. 1124-1133
-
-
Olrichs, N.K.1
Aarsman, M.E.2
Verheul, J.3
-
189
-
-
80052525834
-
A fail-safe mechanism in the septal ring assembly pathway generated by the sequential recruitment of cell separation amidases and their activators
-
Peters, N.T., T. Dinh & T.G. Bernhardt 2011. A fail-safe mechanism in the septal ring assembly pathway generated by the sequential recruitment of cell separation amidases and their activators. J. Bacteriol. 193: 4973-4983.
-
(2011)
J. Bacteriol.
, vol.193
, pp. 4973-4983
-
-
Peters, N.T.1
Dinh, T.2
Bernhardt, T.G.3
-
190
-
-
81055145336
-
An ATP-binding cassette transporter-like complex governs cell-wall hydrolysis at the bacterial cytokinetic ring
-
Yang, D.C., N.T. Peters, K.R. Parzych, et al. 2011. An ATP-binding cassette transporter-like complex governs cell-wall hydrolysis at the bacterial cytokinetic ring. Proc. Natl. Acad. Sci. USA 108: E1052-E1060.
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
-
-
Yang, D.C.1
Peters, N.T.2
Parzych, K.R.3
-
191
-
-
84864816426
-
A conformational switch controls cell wall-remodelling enzymes required for bacterial cell division
-
Yang, D.C., K. Tan, A. Joachimiak, et al. 2012. A conformational switch controls cell wall-remodelling enzymes required for bacterial cell division. Mol. Microbiol. 85: 768-781
-
(2012)
Mol. Microbiol.
, vol.85
, pp. 768-781
-
-
Yang, D.C.1
Tan, K.2
Joachimiak, A.3
-
192
-
-
35348906348
-
Biogenesis of the gram-negative bacterial outer membrane
-
Bos, M.P., V. Robert & J. Tommassen 2007. Biogenesis of the gram-negative bacterial outer membrane. Annu. Rev. Microbiol. 61: 191-214.
-
(2007)
Annu. Rev. Microbiol.
, vol.61
, pp. 191-214
-
-
Bos, M.P.1
Robert, V.2
Tommassen, J.3
-
193
-
-
79951809756
-
The free and bound forms of Lpp occupy distinct subcellular locations in Escherichia coli
-
Cowles, C.E., Y. Li, M.F. Semmelhack, et al. 2011. The free and bound forms of Lpp occupy distinct subcellular locations in Escherichia coli. Mol. Microbiol. 79: 1168-1181.
-
(2011)
Mol. Microbiol.
, vol.79
, pp. 1168-1181
-
-
Cowles, C.E.1
Li, Y.2
Semmelhack, M.F.3
-
194
-
-
0031679259
-
Escherichia coli tol-pal mutants form outer membrane vesicles
-
Bernadac, A., M. Gavioli, J.C. Lazzaroni, et al. 1998. Escherichia coli tol-pal mutants form outer membrane vesicles. J. Bacteriol. 180: 4872-4878.
-
(1998)
J. Bacteriol.
, vol.180
, pp. 4872-4878
-
-
Bernadac, A.1
Gavioli, M.2
Lazzaroni, J.C.3
-
195
-
-
0036180995
-
Pal lipoprotein of Escherichia coli plays a major role in outer membrane integrity
-
Cascales, E., A. Bernadac, M. Gavioli, et al. 2002. Pal lipoprotein of Escherichia coli plays a major role in outer membrane integrity. J. Bacteriol. 184: 754-759.
-
(2002)
J. Bacteriol.
, vol.184
, pp. 754-759
-
-
Cascales, E.1
Bernadac, A.2
Gavioli, M.3
-
196
-
-
33846650968
-
The trans-envelope Tol-Pal complex is part of the cell division machinery and required for proper outer-membrane invagination during cell constriction in E. coli
-
Gerding, M.A., Y. Ogata, N.D. Pecora, et al. 2007. The trans-envelope Tol-Pal complex is part of the cell division machinery and required for proper outer-membrane invagination during cell constriction in E. coli. Mol. Microbiol. 63: 1008-1025.
-
(2007)
Mol. Microbiol.
, vol.63
, pp. 1008-1025
-
-
Gerding, M.A.1
Ogata, Y.2
Pecora, N.D.3
-
197
-
-
0035155704
-
Organisation and evolution of the tol-pal gene cluster
-
Sturgis, J.N. 2001. Organisation and evolution of the tol-pal gene cluster. J. Mol. Microbiol. Biotechnol. 3: 113-122.
-
(2001)
J. Mol. Microbiol. Biotechnol.
, vol.3
, pp. 113-122
-
-
Sturgis, J.N.1
-
198
-
-
0036589166
-
The Tol proteins of Escherichia coli and their involvement in the translocation of group A colicins
-
Lazzaroni, J.C., J.F. Dubuisson & A. Vianney 2002. The Tol proteins of Escherichia coli and their involvement in the translocation of group A colicins. Biochim 84: 391-397.
-
(2002)
Biochim
, vol.84
, pp. 391-397
-
-
Lazzaroni, J.C.1
Dubuisson, J.F.2
Vianney, A.3
-
199
-
-
0032794147
-
Role of TolR N-terminal, central, and C-terminal domains in dimerization and interaction with TolA and tolQ
-
Journet, L., A. Rigal, C. Lazdunski, et al. 1999. Role of TolR N-terminal, central, and C-terminal domains in dimerization and interaction with TolA and tolQ. J. Bacteriol. 181: 4476-4484.
-
(1999)
J. Bacteriol.
, vol.181
, pp. 4476-4484
-
-
Journet, L.1
Rigal, A.2
Lazdunski, C.3
-
200
-
-
0032611727
-
Circular dichroism and molecular modeling of the E. coli TolA periplasmic domains
-
Derouiche, R., R. Lloubes, S. Sasso, et al. 1999. Circular dichroism and molecular modeling of the E. coli TolA periplasmic domains. Biospectroscopy 5: 189-198.
-
(1999)
Biospectroscopy
, vol.5
, pp. 189-198
-
-
Derouiche, R.1
Lloubes, R.2
Sasso, S.3
-
201
-
-
0000046526
-
Filamentous phage infection: crystal structure of g3p in complex with its coreceptor, the C-terminal domain of TolA
-
Lubkowski, J., F. Hennecke, A. Pluckthun, et al. 1999. Filamentous phage infection: crystal structure of g3p in complex with its coreceptor, the C-terminal domain of TolA. Structure 7: 711-722.
-
(1999)
Structure
, vol.7
, pp. 711-722
-
-
Lubkowski, J.1
Hennecke, F.2
Pluckthun, A.3
-
202
-
-
0033569296
-
Structure of the Escherichia coli TolB protein determined by MAD methods at 1.95 A resolution
-
Abergel, C., E. Bouveret, J.M. Claverie, et al. 1999. Structure of the Escherichia coli TolB protein determined by MAD methods at 1.95 A resolution. Structure 7: 1291-1300.
-
(1999)
Structure
, vol.7
, pp. 1291-1300
-
-
Abergel, C.1
Bouveret, E.2
Claverie, J.M.3
-
203
-
-
70349205369
-
Allosteric beta-propeller signalling in TolB and its manipulation by translocating colicins
-
Bonsor, D.A., O. Hecht, M. Vankemmelbeke, et al. 2009. Allosteric beta-propeller signalling in TolB and its manipulation by translocating colicins. EMBO J. 28: 2846-2857.
-
(2009)
EMBO J.
, vol.28
, pp. 2846-2857
-
-
Bonsor, D.A.1
Hecht, O.2
Vankemmelbeke, M.3
-
204
-
-
0029055749
-
Protein complex within Escherichia coli inner membrane. TolA N-terminal domain interacts with TolQ and TolR proteins
-
Derouiche, R., H. Benedetti, J.C. Lazzaroni, et al. 1995. Protein complex within Escherichia coli inner membrane. TolA N-terminal domain interacts with TolQ and TolR proteins. J. Biol. Chem. 270: 11078-11084.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 11078-11084
-
-
Derouiche, R.1
Benedetti, H.2
Lazzaroni, J.C.3
-
205
-
-
0028928434
-
Transmembrane alpha-helix interactions are required for the functional assembly of the Escherichia coli Tol complex
-
Lazzaroni, J.C., A. Vianney, J.L. Popot, et al. 1995. Transmembrane alpha-helix interactions are required for the functional assembly of the Escherichia coli Tol complex. J. Mol. Biol. 246: 1-7.
-
(1995)
J. Mol. Biol.
, vol.246
, pp. 1-7
-
-
Lazzaroni, J.C.1
Vianney, A.2
Popot, J.L.3
-
206
-
-
77957234943
-
TolA modulates the oligomeric status of YbgF in the bacterial periplasm
-
Krachler, A.M., A. Sharma, A. Cauldwell, et al. 2010. TolA modulates the oligomeric status of YbgF in the bacterial periplasm. J. Mol. Biol. 403: 270-285.
-
(2010)
J. Mol. Biol.
, vol.403
, pp. 270-285
-
-
Krachler, A.M.1
Sharma, A.2
Cauldwell, A.3
-
207
-
-
0034970708
-
Energy-dependent conformational change in the TolA protein of Escherichia coli involves its N-terminal domain, TolQ, and TolR
-
Germon, P., M.C. Ray, A. Vianney, et al. 2001. Energy-dependent conformational change in the TolA protein of Escherichia coli involves its N-terminal domain, TolQ, and TolR. J. Bacteriol. 183: 4110-4114.
-
(2001)
J. Bacteriol.
, vol.183
, pp. 4110-4114
-
-
Germon, P.1
Ray, M.C.2
Vianney, A.3
-
208
-
-
0033637616
-
Proton motive force drives the interaction of the inner membrane TolA and outer membrane pal proteins in Escherichia coli
-
Cascales, E., M. Gavioli, J.N. Sturgis, et al. 2000. Proton motive force drives the interaction of the inner membrane TolA and outer membrane pal proteins in Escherichia coli. Mol. Microbiol. 38: 904-915.
-
(2000)
Mol. Microbiol.
, vol.38
, pp. 904-915
-
-
Cascales, E.1
Gavioli, M.2
Sturgis, J.N.3
-
209
-
-
1242342946
-
Deletion analyses of the peptidoglycan-associated lipoprotein Pal reveals three independent binding sequences including a TolA box
-
Cascales, E. & R. Lloubes 2004. Deletion analyses of the peptidoglycan-associated lipoprotein Pal reveals three independent binding sequences including a TolA box. Mol. Microbiol. 51: 873-885.
-
(2004)
Mol. Microbiol.
, vol.51
, pp. 873-885
-
-
Cascales, E.1
Lloubes, R.2
-
210
-
-
77956850709
-
The Caulobacter Tol-Pal complex is essential for outer membrane integrity and the positioning of a polar localization factor
-
Yeh, Y.C., L.R. Comolli, K.H. Downing, et al. 2010. The Caulobacter Tol-Pal complex is essential for outer membrane integrity and the positioning of a polar localization factor. J. Bacteriol. 192: 4847-4858.
-
(2010)
J. Bacteriol.
, vol.192
, pp. 4847-4858
-
-
Yeh, Y.C.1
Comolli, L.R.2
Downing, K.H.3
-
211
-
-
77953995341
-
DipM links peptidoglycan remodelling to outer membrane organization in Caulobacter
-
Goley, E.D., L.R. Comolli, K.E. Fero, et al. 2010. DipM links peptidoglycan remodelling to outer membrane organization in Caulobacter. Mol. Microbiol. 77: 56-73.
-
(2010)
Mol. Microbiol.
, vol.77
, pp. 56-73
-
-
Goley, E.D.1
Comolli, L.R.2
Fero, K.E.3
-
212
-
-
77953996215
-
DipM, a new factor required for peptidoglycan remodelling during cell division in Caulobacter crescentus
-
Möll, A., S. Schlimpert, A. Briegel, et al. 2010. DipM, a new factor required for peptidoglycan remodelling during cell division in Caulobacter crescentus. Mol. Microbiol. 77: 90-107.
-
(2010)
Mol. Microbiol.
, vol.77
, pp. 90-107
-
-
Möll, A.1
Schlimpert, S.2
Briegel, A.3
-
213
-
-
77953977302
-
A protein critical for cell constriction in the Gram-negative bacterium Caulobacter crescentus localizes at the division site through its peptidoglycan-binding LysM domains
-
Poggio, S., C.N. Takacs, W. Vollmer, et al. 2010. A protein critical for cell constriction in the Gram-negative bacterium Caulobacter crescentus localizes at the division site through its peptidoglycan-binding LysM domains. Mol. Microbiol. 77: 74-89.
-
(2010)
Mol. Microbiol.
, vol.77
, pp. 74-89
-
-
Poggio, S.1
Takacs, C.N.2
Vollmer, W.3
|