메뉴 건너뛰기




Volumn 1277, Issue 1, 2013, Pages 8-28

The physiology of bacterial cell division

Author keywords

Cell division; Divisome; Outer membrane; Penicillin binding protein; Peptidoglycan; Peptidoglycan hydrolyase; Tol Pal

Indexed keywords

AMIDASE; LIPOPROTEIN; OUTER MEMBRANE PROTEIN; PEPTIDOGLYCAN; PEPTIDOGLYCAN SYNTHASE; SYNTHETASE; UNCLASSIFIED DRUG;

EID: 84872856522     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1111/j.1749-6632.2012.06818.x     Document Type: Article
Times cited : (260)

References (213)
  • 2
    • 84873775015 scopus 로고
    • Bagshaped macromolecules-a new outlook on bacterial cell walls
    • Weidel, W. & H. Pelzer 1964. Bagshaped macromolecules-a new outlook on bacterial cell walls. Adv. Enzymol. 26: 193-232.
    • (1964) Adv. Enzymol. , vol.26 , pp. 193-232
    • Weidel, W.1    Pelzer, H.2
  • 3
    • 75349104798 scopus 로고    scopus 로고
    • Architecture of peptidoglycan: more data and more models
    • Vollmer, W. & S.J. Seligman 2010. Architecture of peptidoglycan: more data and more models. Trends Microbiol. 18: 59-66.
    • (2010) Trends Microbiol. , vol.18 , pp. 59-66
    • Vollmer, W.1    Seligman, S.J.2
  • 4
    • 0015462556 scopus 로고
    • Peptidoglycan types of bacterial cell walls and their taxonomic implications
    • Schleifer, K.H. & O. Kandler 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36: 407-477.
    • (1972) Bacteriol. Rev. , vol.36 , pp. 407-477
    • Schleifer, K.H.1    Kandler, O.2
  • 5
    • 0015611501 scopus 로고
    • Covalent binding of lipid to protein. Diglyceride and amide-linked fatty acid at the N-terminal end of the murein-lipoprotein of the Escherichia coli outer membrane
    • Hantke, K. & V. Braun 1973. Covalent binding of lipid to protein. Diglyceride and amide-linked fatty acid at the N-terminal end of the murein-lipoprotein of the Escherichia coli outer membrane. Eur. J. Biochem. 34: 284-296.
    • (1973) Eur. J. Biochem. , vol.34 , pp. 284-296
    • Hantke, K.1    Braun, V.2
  • 6
    • 0033618622 scopus 로고    scopus 로고
    • Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall
    • Mazmanian, S.K., G. Liu, H. Ton-That, et al. 1999. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285: 760-763.
    • (1999) Science , vol.285 , pp. 760-763
    • Mazmanian, S.K.1    Liu, G.2    Ton-That, H.3
  • 7
    • 39149102149 scopus 로고    scopus 로고
    • Structural variation in the glycan strands of bacterial peptidoglycan
    • Vollmer, W. 2008. Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol. Rev. 32: 287-306.
    • (2008) FEMS Microbiol. Rev. , vol.32 , pp. 287-306
    • Vollmer, W.1
  • 8
    • 84857491427 scopus 로고    scopus 로고
    • Identification of genetic determinants and enzymes involved with the amidation of glutamic acid residues in the peptidoglycan of Staphylococcus aureus
    • Figueiredo, T.A., R.G. Sobral, A.M. Ludovice, et al. 2012. Identification of genetic determinants and enzymes involved with the amidation of glutamic acid residues in the peptidoglycan of Staphylococcus aureus. PLoS Pathog. 8: e1002508.
    • (2012) PLoS Pathog. , vol.8
    • Figueiredo, T.A.1    Sobral, R.G.2    Ludovice, A.M.3
  • 9
    • 84857494112 scopus 로고    scopus 로고
    • Identification and in vitro analysis of the GatD/MurT enzyme-complex catalyzing lipid II amidation in Staphylococcus aureus
    • Münch, D., T. Roemer, S.H. Lee, et al. 2012. Identification and in vitro analysis of the GatD/MurT enzyme-complex catalyzing lipid II amidation in Staphylococcus aureus. PLoS Pathog. 8: e1002509.
    • (2012) PLoS Pathog. , vol.8
    • Münch, D.1    Roemer, T.2    Lee, S.H.3
  • 10
    • 4444220092 scopus 로고    scopus 로고
    • The architecture of the murein (peptidoglycan) in Gram-negative bacteria: vertical scaffold or horizontal layer(s)
    • Vollmer, W. & J.-V. Höltje 2004. The architecture of the murein (peptidoglycan) in Gram-negative bacteria: vertical scaffold or horizontal layer(s) J. Bacteriol. 186: 5978-5987.
    • (2004) J. Bacteriol. , vol.186 , pp. 5978-5987
    • Vollmer, W.1    Höltje, J.-V.2
  • 11
    • 57749083521 scopus 로고    scopus 로고
    • Molecular organization of Gram-negative peptidoglycan
    • Gan, L., S. Chen & G.J. Jensen 2008. Molecular organization of Gram-negative peptidoglycan. Proc. Natl. Acad. Sci. USA 105: 18953-18957.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 18953-18957
    • Gan, L.1    Chen, S.2    Jensen, G.J.3
  • 12
    • 0023677844 scopus 로고
    • The composition of the murein of Escherichia coli
    • Glauner, B., J.-V. Höltje & U. Schwarz 1988. The composition of the murein of Escherichia coli. J. Biol. Chem. 263: 10088-10095.
    • (1988) J. Biol. Chem. , vol.263 , pp. 10088-10095
    • Glauner, B.1    Höltje, J.-V.2    Schwarz, U.3
  • 13
    • 0025012287 scopus 로고
    • Isolation and separation of the glycan strands from murein of Escherichia coli by reversed-phase high-performance liquid chromatography
    • Harz, H., K. Burgdorf & J.-V. Höltje 1990. Isolation and separation of the glycan strands from murein of Escherichia coli by reversed-phase high-performance liquid chromatography. Anal Biochem. 190: 120-128.
    • (1990) Anal Biochem. , vol.190 , pp. 120-128
    • Harz, H.1    Burgdorf, K.2    Höltje, J.-V.3
  • 14
    • 0037494988 scopus 로고    scopus 로고
    • Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell
    • Daniel, R.A. & J. Errington 2003. Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113: 767-776.
    • (2003) Cell , vol.113 , pp. 767-776
    • Daniel, R.A.1    Errington, J.2
  • 15
    • 0037858060 scopus 로고    scopus 로고
    • Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli
    • Höltje, J.-V. 1998. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev 62: 181-203.
    • (1998) Microbiol. Mol. Biol. Rev , vol.62 , pp. 181-203
    • Höltje, J.-V.1
  • 16
    • 84863116870 scopus 로고    scopus 로고
    • Polar growth in the alphaproteobacterial order Rhizobiales
    • Brown, P.J., M.A. de Pedro, D.T. Kysela, et al. 2012. Polar growth in the alphaproteobacterial order Rhizobiales. Proc. Natl. Acad. Sci. USA 109: 1697-1701.
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 1697-1701
    • Brown, P.J.1    De Pedro, M.A.2    Kysela, D.T.3
  • 17
    • 79960083390 scopus 로고    scopus 로고
    • Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria
    • Dominguez-Escobar, J., A. Chastanet, A.H. Crevenna, et al. 2011. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333: 225-228.
    • (2011) Science , vol.333 , pp. 225-228
    • Dominguez-Escobar, J.1    Chastanet, A.2    Crevenna, A.H.3
  • 18
    • 79960075043 scopus 로고    scopus 로고
    • Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis
    • Garner, E.C., R. Bernard, W. Wang, et al. 2011. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333: 222-225.
    • (2011) Science , vol.333 , pp. 222-225
    • Garner, E.C.1    Bernard, R.2    Wang, W.3
  • 19
    • 80052431295 scopus 로고    scopus 로고
    • The bacterial actin MreB rotates, and rotation depends on cell-wall assembly
    • van Teeffelen, S., S. Wang, L. Furchtgott, et al. 2011. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc. Natl. Acad. Sci. USA 108: 15822-15827.
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 15822-15827
    • Van Teeffelen, S.1    Wang, S.2    Furchtgott, L.3
  • 20
    • 27644540151 scopus 로고    scopus 로고
    • FtsZ and the division of prokaryotic cells and organelles
    • Margolin, W. 2005. FtsZ and the division of prokaryotic cells and organelles. Nat. Rev. Mol. Cell. Biol. 6: 862-871.
    • (2005) Nat. Rev. Mol. Cell. Biol. , vol.6 , pp. 862-871
    • Margolin, W.1
  • 21
    • 34248364322 scopus 로고    scopus 로고
    • The tubulin homologue FtsZ contributes to cell elongation by guiding cell wall precursor synthesis in Caulobacter crescentus
    • Aaron, M., G. Charbon, H. Lam, et al. 2007. The tubulin homologue FtsZ contributes to cell elongation by guiding cell wall precursor synthesis in Caulobacter crescentus. Mol. Microbiol. 64: 938-952.
    • (2007) Mol. Microbiol. , vol.64 , pp. 938-952
    • Aaron, M.1    Charbon, G.2    Lam, H.3
  • 23
    • 78650497005 scopus 로고    scopus 로고
    • Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases
    • Paradis-Bleau, C., M. Markovski, T. Uehara, et al. 2010. Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases. Cell 143: 1110-1120.
    • (2010) Cell , vol.143 , pp. 1110-1120
    • Paradis-Bleau, C.1    Markovski, M.2    Uehara, T.3
  • 24
    • 78650431707 scopus 로고    scopus 로고
    • Regulation of peptidoglycan synthesis by outer membrane proteins
    • Typas, A., M. Banzhaf, v. B. van Saparoea, et al. 2010. Regulation of peptidoglycan synthesis by outer membrane proteins. Cell 143: 1097-1109.
    • (2010) Cell , vol.143 , pp. 1097-1109
    • Typas, A.1    Banzhaf, M.2    Van Saparoea, V.B.3
  • 25
    • 80052486494 scopus 로고    scopus 로고
    • Chemical-biological studies of subcellular organization in bacteria
    • Foss, M.H., Y.J. Eun & D.B. Weibel 2011. Chemical-biological studies of subcellular organization in bacteria. Biochemistry 50: 7719-7734.
    • (2011) Biochemistry , vol.50 , pp. 7719-7734
    • Foss, M.H.1    Eun, Y.J.2    Weibel, D.B.3
  • 26
    • 84857549874 scopus 로고    scopus 로고
    • Targeting the assembly of bacterial cell division protein FtsZ with small molecules
    • Schaffner-Barbero, C., M. Martin-Fontecha, P. Chacon, et al. 2012. Targeting the assembly of bacterial cell division protein FtsZ with small molecules. ACS Chem. Biol. 7: 269-277.
    • (2012) ACS Chem. Biol. , vol.7 , pp. 269-277
    • Schaffner-Barbero, C.1    Martin-Fontecha, M.2    Chacon, P.3
  • 27
    • 73649122749 scopus 로고    scopus 로고
    • An oldie but a goodie-cell wall biosynthesis as antibiotic target pathway
    • Schneider, T. & H.G. Sahl 2010. An oldie but a goodie-cell wall biosynthesis as antibiotic target pathway. Int. J. Med. Microbiol. 300: 161-169.
    • (2010) Int. J. Med. Microbiol. , vol.300 , pp. 161-169
    • Schneider, T.1    Sahl, H.G.2
  • 28
    • 33750376659 scopus 로고    scopus 로고
    • The prokaryotic cytoskeleton: a putative target for inhibitors and antibiotics
    • Vollmer, W. 2006. The prokaryotic cytoskeleton: a putative target for inhibitors and antibiotics Appl. Microbiol. Biotechnol. 73: 37-47.
    • (2006) Appl. Microbiol. Biotechnol. , vol.73 , pp. 37-47
    • Vollmer, W.1
  • 29
    • 39149083088 scopus 로고    scopus 로고
    • Cytoplasmic steps of peptidoglycan biosynthesis
    • Barreteau, H., A. Kovac, A. Boniface, et al. 2008. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32: 168-207.
    • (2008) FEMS Microbiol. Rev. , vol.32 , pp. 168-207
    • Barreteau, H.1    Kovac, A.2    Boniface, A.3
  • 30
    • 39149123173 scopus 로고    scopus 로고
    • The biosynthesis of peptidoglycan lipid-linked intermediates
    • Bouhss, A., A.E. Trunkfield, T.D. Bugg, et al. 2008. The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiol. Rev. 32: 208-233.
    • (2008) FEMS Microbiol. Rev. , vol.32 , pp. 208-233
    • Bouhss, A.1    Trunkfield, A.E.2    Bugg, T.D.3
  • 32
    • 79955007775 scopus 로고    scopus 로고
    • Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane
    • Mohammadi, T., V. van Dam, R. Sijbrandi, et al. 2011. Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO J. 30: 1425-1432.
    • (2011) EMBO J. , vol.30 , pp. 1425-1432
    • Mohammadi, T.1    Van Dam, V.2    Sijbrandi, R.3
  • 33
    • 36148959323 scopus 로고    scopus 로고
    • Analysis of glycan polymers produced by peptidoglycan glycosyltransferases
    • Barrett, D., T.S. Wang, Y. Yuan, et al. 2007. Analysis of glycan polymers produced by peptidoglycan glycosyltransferases. J. Biol. Chem. 282: 31964-31971.
    • (2007) J. Biol. Chem. , vol.282 , pp. 31964-31971
    • Barrett, D.1    Wang, T.S.2    Yuan, Y.3
  • 34
    • 74849096125 scopus 로고    scopus 로고
    • The role of the substrate lipid in processive glycan polymerization by the peptidoglycan glycosyltransferases
    • Perlstein, D.L., T.S. Wang, E.H. Doud, et al. 2010. The role of the substrate lipid in processive glycan polymerization by the peptidoglycan glycosyltransferases. J. Am. Chem. Soc. 132: 48-49.
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 48-49
    • Perlstein, D.L.1    Wang, T.S.2    Doud, E.H.3
  • 35
    • 33947132188 scopus 로고    scopus 로고
    • Structural insight into the transglycosylation step of bacterial cell-wall biosynthesis
    • Lovering, A.L., L.H. de Castro, D. Lim, et al. 2007. Structural insight into the transglycosylation step of bacterial cell-wall biosynthesis. Science 315: 1402-1405.
    • (2007) Science , vol.315 , pp. 1402-1405
    • Lovering, A.L.1    De Castro, L.H.2    Lim, D.3
  • 36
    • 67049087759 scopus 로고    scopus 로고
    • Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli
    • Sung, M.T., Y.T. Lai, C.Y. Huang, et al. 2009. Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli. Proc. Natl. Acad. Sci. USA 106: 8824-8829.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 8824-8829
    • Sung, M.T.1    Lai, Y.T.2    Huang, C.Y.3
  • 37
    • 39149088656 scopus 로고    scopus 로고
    • The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis
    • Sauvage, E., F. Kerff, M. Terrak, et al. 2008. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32: 234-258.
    • (2008) FEMS Microbiol. Rev. , vol.32 , pp. 234-258
    • Sauvage, E.1    Kerff, F.2    Terrak, M.3
  • 38
    • 0021981840 scopus 로고
    • Release of cell wall peptides into culture medium by exponentially growing Escherichia coli
    • Goodell, E.W. & U. Schwarz 1985. Release of cell wall peptides into culture medium by exponentially growing Escherichia coli. J. Bacteriol. 162: 391-397.
    • (1985) J. Bacteriol. , vol.162 , pp. 391-397
    • Goodell, E.W.1    Schwarz, U.2
  • 39
    • 44949258242 scopus 로고    scopus 로고
    • How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan)
    • Park, J.T. & T. Uehara 2008. How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan). Microbiol. Mol. Biol. Rev. 72: 211-227.
    • (2008) Microbiol. Mol. Biol. Rev. , vol.72 , pp. 211-227
    • Park, J.T.1    Uehara, T.2
  • 40
    • 0021337819 scopus 로고
    • Molecular model for elongation of the murein sacculus of Escherichia coli
    • Burman, L.G. & J.T. Park 1984. Molecular model for elongation of the murein sacculus of Escherichia coli. Proc. Natl. Acad. Sci. USA 81: 1844-1848.
    • (1984) Proc. Natl. Acad. Sci. USA , vol.81 , pp. 1844-1848
    • Burman, L.G.1    Park, J.T.2
  • 41
    • 0002426524 scopus 로고
    • "Three for one"- A simple growth mechanism that guarantees a precise copy of the thin, rod-shaped murein sacculus of Escherichia coli
    • In M. A. de Pedro, J.-V. Höltje & W. Löffelhardt, Eds.: - Plenum Press. New York-London
    • Höltje, J.-V. 1993. "Three for one"- A simple growth mechanism that guarantees a precise copy of the thin, rod-shaped murein sacculus of Escherichia coli. In Bacterial Growth and Lysis-Metabolism and Structure of the Bacterial Sacculus M. A. de Pedro, J.-V. Höltje & W. Löffelhardt, Eds.: 419-426. Plenum Press. New York-London
    • (1993) Bacterial Growth and Lysis-Metabolism and Structure of the Bacterial Sacculus , pp. 419-426
    • Höltje, J.-V.1
  • 42
    • 39749105962 scopus 로고    scopus 로고
    • The monofunctional glycosyltransferase of Escherichia coli localizes to the cell division site and interacts with penicillin-binding protein 3, FtsW, and FtsN
    • Derouaux, A., B. Wolf, C. Fraipont, et al. 2008. The monofunctional glycosyltransferase of Escherichia coli localizes to the cell division site and interacts with penicillin-binding protein 3, FtsW, and FtsN. J. Bacteriol. 190: 1831-1834.
    • (2008) J. Bacteriol. , vol.190 , pp. 1831-1834
    • Derouaux, A.1    Wolf, B.2    Fraipont, C.3
  • 43
    • 33748751261 scopus 로고    scopus 로고
    • In vitro synthesis of cross-linked murein and its attachment to sacculi by PBP1A from Escherichia coli
    • Born, P., E. Breukink & W. Vollmer 2006. In vitro synthesis of cross-linked murein and its attachment to sacculi by PBP1A from Escherichia coli. J. Biol. Chem. 281: 26985-26993.
    • (2006) J. Biol. Chem. , vol.281 , pp. 26985-26993
    • Born, P.1    Breukink, E.2    Vollmer, W.3
  • 44
    • 0025168851 scopus 로고
    • Growth pattern of the murein sacculus of Escherichia coli
    • Glauner, B. & J.-V. Höltje 1990. Growth pattern of the murein sacculus of Escherichia coli. J. Biol. Chem 265: 18988-18996.
    • (1990) J. Biol. Chem , vol.265 , pp. 18988-18996
    • Glauner, B.1    Höltje, J.-V.2
  • 45
    • 0035179069 scopus 로고    scopus 로고
    • Differential responses of Escherichia coli cells expressing cytoplasmic domain mutants of penicillin-binding protein 1b after impairment of penicillin-binding proteins 1a and 3
    • Chalut, C., X. Charpentier, M.H. Remy, et al. 2001. Differential responses of Escherichia coli cells expressing cytoplasmic domain mutants of penicillin-binding protein 1b after impairment of penicillin-binding proteins 1a and 3. J. Bacteriol. 183: 200-206.
    • (2001) J. Bacteriol. , vol.183 , pp. 200-206
    • Chalut, C.1    Charpentier, X.2    Remy, M.H.3
  • 46
    • 0028082052 scopus 로고
    • Artifactual processing of penicillin-binding proteins 7 and 1b by the OmpT protease of Escherichia coli
    • Henderson, T.A., P.M. Dombrosky & K.D. Young 1994. Artifactual processing of penicillin-binding proteins 7 and 1b by the OmpT protease of Escherichia coli. J. Bacteriol. 176: 256-259.
    • (1994) J. Bacteriol. , vol.176 , pp. 256-259
    • Henderson, T.A.1    Dombrosky, P.M.2    Young, K.D.3
  • 47
    • 27844575191 scopus 로고    scopus 로고
    • In vitro murein peptidoglycan synthesis by dimers of the bifunctional transglycosylase-transpeptidase PBP1B from Escherichia coli
    • Bertsche, U., E. Breukink, T. Kast, et al. 2005. In vitro murein peptidoglycan synthesis by dimers of the bifunctional transglycosylase-transpeptidase PBP1B from Escherichia coli. J. Biol. Chem 280: 38096-38101.
    • (2005) J. Biol. Chem , vol.280 , pp. 38096-38101
    • Bertsche, U.1    Breukink, E.2    Kast, T.3
  • 48
    • 0025990145 scopus 로고
    • Penicillin-binding protein 1B of Escherichia coli exists in dimeric forms
    • Zijderveld, C.A., M.E. Aarsman, T. den Blaauwen, et al. 1991. Penicillin-binding protein 1B of Escherichia coli exists in dimeric forms. J. Bacteriol. 173: 5740-5746.
    • (1991) J. Bacteriol. , vol.173 , pp. 5740-5746
    • Zijderveld, C.A.1    Aarsman, M.E.2    Den Blaauwen, T.3
  • 49
    • 0032874101 scopus 로고    scopus 로고
    • The catalytic, glycosyl transferase and acyl transferase modules of the cell wall peptidoglycan-polymerizing penicillin-binding protein 1b of Escherichia coli
    • Terrak, M., T.K. Ghosh, J. van Heijenoort, et al. 1999. The catalytic, glycosyl transferase and acyl transferase modules of the cell wall peptidoglycan-polymerizing penicillin-binding protein 1b of Escherichia coli. Mol. Microbiol. 34: 350-364.
    • (1999) Mol. Microbiol. , vol.34 , pp. 350-364
    • Terrak, M.1    Ghosh, T.K.2    Van Heijenoort, J.3
  • 50
    • 57649134967 scopus 로고    scopus 로고
    • Importance of the conserved residues in the peptidoglycan glycosyltransferase module of the class A penicillin-binding protein 1b of Escherichia coli
    • Terrak, M., E. Sauvage, A. Derouaux, et al. 2008. Importance of the conserved residues in the peptidoglycan glycosyltransferase module of the class A penicillin-binding protein 1b of Escherichia coli. J. Biol. Chem 283: 28464-28470.
    • (2008) J. Biol. Chem , vol.283 , pp. 28464-28470
    • Terrak, M.1    Sauvage, E.2    Derouaux, A.3
  • 51
    • 84862772767 scopus 로고    scopus 로고
    • Cooperativity of peptidoglycan synthases active in bacterial cell elongation
    • Banzhaf, M., B. van den Berg van Saparoea, M. Terrak, et al. 2012. Cooperativity of peptidoglycan synthases active in bacterial cell elongation. Mol. Microbiol. 85: 179-194.
    • (2012) Mol. Microbiol. , vol.85 , pp. 179-194
    • Banzhaf, M.1    Van Den Berg Van Saparoea, B.2    Terrak, M.3
  • 52
    • 84861193683 scopus 로고    scopus 로고
    • The membrane anchor of penicillin-binding protein PBP2a from Streptococcus pneumoniae influences peptidoglycan chain length
    • Helassa, N., W. Vollmer, E. Breukink, et al. 2012. The membrane anchor of penicillin-binding protein PBP2a from Streptococcus pneumoniae influences peptidoglycan chain length. FEBS J 279: 2071-2081.
    • (2012) FEBS J , vol.279 , pp. 2071-2081
    • Helassa, N.1    Vollmer, W.2    Breukink, E.3
  • 53
    • 0029808359 scopus 로고    scopus 로고
    • The non-penicillin-binding module of the tripartite penicillin-binding protein 3 of Escherichia coli is required for folding and/or stability of the penicillin-binding module and the membrane-anchoring module confers cell septation activity on the folded structure
    • Goffin, C., C. Fraipont, J. Ayala, et al. 1996. The non-penicillin-binding module of the tripartite penicillin-binding protein 3 of Escherichia coli is required for folding and/or stability of the penicillin-binding module and the membrane-anchoring module confers cell septation activity on the folded structure. J. Bacteriol. 178: 5402-5409.
    • (1996) J. Bacteriol. , vol.178 , pp. 5402-5409
    • Goffin, C.1    Fraipont, C.2    Ayala, J.3
  • 54
    • 78649658087 scopus 로고    scopus 로고
    • Bridging cell wall biosynthesis and bacterial morphogenesis
    • Mattei, P.J., D. Neves & A. Dessen 2010. Bridging cell wall biosynthesis and bacterial morphogenesis. Curr. Op. Struct. Biol. 20: 749-755.
    • (2010) Curr. Op. Struct. Biol. , vol.20 , pp. 749-755
    • Mattei, P.J.1    Neves, D.2    Dessen, A.3
  • 55
    • 0037244586 scopus 로고    scopus 로고
    • Penicillin-binding protein PBP2 of Escherichia coli localizes preferentially in the lateral wall and at mid-cell in comparison with the old cell pole
    • den Blaauwen, T., M.E. Aarsman, N.O. Vischer, et al. 2003. Penicillin-binding protein PBP2 of Escherichia coli localizes preferentially in the lateral wall and at mid-cell in comparison with the old cell pole. Mol. Microbiol. 47: 539-547.
    • (2003) Mol. Microbiol. , vol.47 , pp. 539-547
    • Den Blaauwen, T.1    Aarsman, M.E.2    Vischer, N.O.3
  • 56
    • 84864010982 scopus 로고    scopus 로고
    • Osmolality-dependent relocation of penicillin-binding protein PBP2 to the division site in Caulobacter crescentus
    • Hocking, J., R. Priyadarshini, C.N. Takacs, et al. 2012. Osmolality-dependent relocation of penicillin-binding protein PBP2 to the division site in Caulobacter crescentus. J. Bacteriol. 194: 3116-3127.
    • (2012) J. Bacteriol. , vol.194 , pp. 3116-3127
    • Hocking, J.1    Priyadarshini, R.2    Takacs, C.N.3
  • 57
    • 80053250366 scopus 로고    scopus 로고
    • Characterization of the elongasome core PBP2 : MreC complex of Helicobacter pylori
    • El Ghachi, M., P.J. Mattei, C. Ecobichon, et al. 2011. Characterization of the elongasome core PBP2 : MreC complex of Helicobacter pylori. Mol. Microbiol. 82: 68-86.
    • (2011) Mol. Microbiol. , vol.82 , pp. 68-86
    • El Ghachi, M.1    Mattei, P.J.2    Ecobichon, C.3
  • 58
    • 12344306119 scopus 로고    scopus 로고
    • The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex
    • Kruse, T., J. Bork-Jensen & K. Gerdes 2005. The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex. Mol. Microbiol. 55: 78-89.
    • (2005) Mol. Microbiol. , vol.55 , pp. 78-89
    • Kruse, T.1    Bork-Jensen, J.2    Gerdes, K.3
  • 59
    • 0030881627 scopus 로고    scopus 로고
    • Localization of the Escherichia coli cell division protein Ftsl (PBP3) to the division site and cell pole
    • Weiss, D.S., K. Pogliano, M. Carson, et al. 1997. Localization of the Escherichia coli cell division protein Ftsl (PBP3) to the division site and cell pole. Mol. Microbiol. 25: 671-681.
    • (1997) Mol. Microbiol. , vol.25 , pp. 671-681
    • Weiss, D.S.1    Pogliano, K.2    Carson, M.3
  • 60
    • 0030921172 scopus 로고    scopus 로고
    • The bimodular G57-V577 polypeptide chain of the class B penicillin-binding protein 3 of Escherichia coli catalyzes peptide bond formation from thiolesters and does not catalyze glycan chain polymerization from the lipid II intermediate
    • Adam, M., C. Fraipont, N. Rhazi, et al. 1997. The bimodular G57-V577 polypeptide chain of the class B penicillin-binding protein 3 of Escherichia coli catalyzes peptide bond formation from thiolesters and does not catalyze glycan chain polymerization from the lipid II intermediate. J. Bacteriol. 179: 6005-6009.
    • (1997) J. Bacteriol. , vol.179 , pp. 6005-6009
    • Adam, M.1    Fraipont, C.2    Rhazi, N.3
  • 61
    • 50049104157 scopus 로고    scopus 로고
    • Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli
    • Vollmer, W. & U. Bertsche 2008. Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. Biochim. Biophys. Acta 1778: 1714-1734.
    • (2008) Biochim. Biophys. Acta , vol.1778 , pp. 1714-1734
    • Vollmer, W.1    Bertsche, U.2
  • 62
    • 84862016534 scopus 로고    scopus 로고
    • Calcium-dependent complex formation between PBP2 and lytic transglycosylase SltB1 of Pseudomonas aeruginosa
    • Nikolaidis, I., T. Izore, V. Job, et al. 2012. Calcium-dependent complex formation between PBP2 and lytic transglycosylase SltB1 of Pseudomonas aeruginosa. Microb. Drug Resist 18: 298-305.
    • (2012) Microb. Drug Resist , vol.18 , pp. 298-305
    • Nikolaidis, I.1    Izore, T.2    Job, V.3
  • 63
    • 33748333182 scopus 로고    scopus 로고
    • Interaction between two murein (peptidoglycan) synthases, PBP3 and PBP1B, in Escherichia coli
    • Bertsche, U., T. Kast, B. Wolf, et al. 2006. Interaction between two murein (peptidoglycan) synthases, PBP3 and PBP1B, in Escherichia coli. Mol. Microbiol. 61: 675-690.
    • (2006) Mol. Microbiol. , vol.61 , pp. 675-690
    • Bertsche, U.1    Kast, T.2    Wolf, B.3
  • 64
    • 0025987074 scopus 로고
    • Identification of a new mutation in Escherichia coli that suppresses a pbpB (Ts) phenotype in the presence of penicillin-binding protein 1B
    • Garcia del Portillo, F., M.A. de Pedro & J.A. Ayala 1991. Identification of a new mutation in Escherichia coli that suppresses a pbpB (Ts) phenotype in the presence of penicillin-binding protein 1B. FEMS Microbiol. Lett 68: 7-13.
    • (1991) FEMS Microbiol. Lett , vol.68 , pp. 7-13
    • Garcia Del Portillo, F.1    De Pedro, M.A.2    Ayala, J.A.3
  • 65
    • 84855889658 scopus 로고    scopus 로고
    • From the regulation of peptidoglycan synthesis to bacterial growth and morphology
    • Typas, A., M. Banzhaf, C.A. Gross, et al. 2012. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat. Rev. Microbiol. 10: 123-136.
    • (2012) Nat. Rev. Microbiol. , vol.10 , pp. 123-136
    • Typas, A.1    Banzhaf, M.2    Gross, C.A.3
  • 66
    • 0026059127 scopus 로고
    • FtsZ ring structure associated with division in Escherichia coli
    • Bi, E. & J. Lutkenhaus 1991. FtsZ ring structure associated with division in Escherichia coli. Nature 354: 161-164.
    • (1991) Nature , vol.354 , pp. 161-164
    • Bi, E.1    Lutkenhaus, J.2
  • 67
    • 2642593025 scopus 로고    scopus 로고
    • Crystal structure of the bacterial cell-division protein FtsZ
    • Löwe, J. & L.A. Amos 1998. Crystal structure of the bacterial cell-division protein FtsZ. Nature 391: 203-206.
    • (1998) Nature , vol.391 , pp. 203-206
    • Löwe, J.1    Amos, L.A.2
  • 68
    • 0032518656 scopus 로고    scopus 로고
    • Dynamic assembly of FtsZ regulated by GTP hydrolysis
    • Mukherjee, A. & J. Lutkenhaus 1998. Dynamic assembly of FtsZ regulated by GTP hydrolysis. EMBO J. 17: 462-469.
    • (1998) EMBO J. , vol.17 , pp. 462-469
    • Mukherjee, A.1    Lutkenhaus, J.2
  • 69
    • 78650078263 scopus 로고    scopus 로고
    • FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one
    • Erickson, H.P., D.E. Anderson & M. Osawa 2010. FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol. Mol. Biol. Rev. 74: 504-528.
    • (2010) Microbiol. Mol. Biol. Rev. , vol.74 , pp. 504-528
    • Erickson, H.P.1    Anderson, D.E.2    Osawa, M.3
  • 70
    • 36248938686 scopus 로고    scopus 로고
    • The structure of FtsZ filaments in vivo suggests a force-generating role in cell division
    • Li, Z., M.J. Trimble, Y.V. Brun, et al. 2007. The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J. 26: 4694-4708.
    • (2007) EMBO J. , vol.26 , pp. 4694-4708
    • Li, Z.1    Trimble, M.J.2    Brun, Y.V.3
  • 71
    • 4344652693 scopus 로고    scopus 로고
    • Assembly dynamics of FtsZ rings in Bacillus subtilis and Escherichia coli and effects of FtsZ-regulating proteins
    • Anderson, D.E., F.J. Gueiros-Filho & H.P. Erickson 2004. Assembly dynamics of FtsZ rings in Bacillus subtilis and Escherichia coli and effects of FtsZ-regulating proteins. J. Bacteriol. 186: 5775-5781.
    • (2004) J. Bacteriol. , vol.186 , pp. 5775-5781
    • Anderson, D.E.1    Gueiros-Filho, F.J.2    Erickson, H.P.3
  • 72
    • 84861427754 scopus 로고    scopus 로고
    • Depolymerization dynamics of individual filaments of bacterial cytoskeletal protein FtsZ
    • Mateos-Gil, P., A. Paez, I. Horger, et al. 2012. Depolymerization dynamics of individual filaments of bacterial cytoskeletal protein FtsZ. Proc. Natl. Acad. Sci. USA 109: 8133-8138.
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 8133-8138
    • Mateos-Gil, P.1    Paez, A.2    Horger, I.3
  • 73
    • 0035794706 scopus 로고    scopus 로고
    • Dynamic localization cycle of the cell division regulator MinE in Escherichia coli
    • Hale, C.A., H. Meinhardt & P.A. de Boer 2001. Dynamic localization cycle of the cell division regulator MinE in Escherichia coli. EMBO J. 20: 1563-1572.
    • (2001) EMBO J. , vol.20 , pp. 1563-1572
    • Hale, C.A.1    Meinhardt, H.2    de Boer, P.A.3
  • 74
    • 0033609139 scopus 로고    scopus 로고
    • Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli
    • Raskin, D.M. & P.A.J. de Boer 1999. Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc. Natl. Acad. Sci. USA 96: 4971-4976.
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 4971-4976
    • Raskin, D.M.1    de Boer, P.A.J.2
  • 75
    • 79961135028 scopus 로고    scopus 로고
    • The Min oscillator uses MinD-dependent conformational changes in MinE to spatially regulate cytokinesis
    • Park, K.T., W. Wu, K.P. Battaile, et al. 2011. The Min oscillator uses MinD-dependent conformational changes in MinE to spatially regulate cytokinesis. Cell 146: 396-407.
    • (2011) Cell , vol.146 , pp. 396-407
    • Park, K.T.1    Wu, W.2    Battaile, K.P.3
  • 76
    • 19444386428 scopus 로고    scopus 로고
    • SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli
    • Bernhardt, T.G. & P.A. de Boer 2005. SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol. Cell 18: 555-564.
    • (2005) Mol. Cell , vol.18 , pp. 555-564
    • Bernhardt, T.G.1    de Boer, P.A.2
  • 77
    • 2942752105 scopus 로고    scopus 로고
    • Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis
    • Wu, L.J. & J. Errington 2004. Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117: 915-925.
    • (2004) Cell , vol.117 , pp. 915-925
    • Wu, L.J.1    Errington, J.2
  • 78
    • 79952741894 scopus 로고    scopus 로고
    • Nucleoid occlusion factor SlmA is a DNA-activated FtsZ polymerization antagonist
    • Cho, H., H.R. McManus, S.L. Dove, et al. 2011. Nucleoid occlusion factor SlmA is a DNA-activated FtsZ polymerization antagonist. Proc. Natl. Acad. Sci. USA 108: 3773-3778.
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 3773-3778
    • Cho, H.1    McManus, H.R.2    Dove, S.L.3
  • 79
    • 78650910561 scopus 로고    scopus 로고
    • Molecular mechanism by which the nucleoid occlusion factor, SlmA, keeps cytokinesis in check
    • Tonthat, N.K., S.T. Arold, B.F. Pickering, et al. 2011. Molecular mechanism by which the nucleoid occlusion factor, SlmA, keeps cytokinesis in check. EMBO J. 30: 154-164.
    • (2011) EMBO J. , vol.30 , pp. 154-164
    • Tonthat, N.K.1    Arold, S.T.2    Pickering, B.F.3
  • 80
    • 67650435786 scopus 로고    scopus 로고
    • Noc protein binds to specific DNA sequences to coordinate cell division with chromosome segregation
    • Wu, L.J., S. Ishikawa, Y. Kawai, et al. 2009. Noc protein binds to specific DNA sequences to coordinate cell division with chromosome segregation. EMBO J. 28: 1940-1952.
    • (2009) EMBO J. , vol.28 , pp. 1940-1952
    • Wu, L.J.1    Ishikawa, S.2    Kawai, Y.3
  • 81
    • 83855160828 scopus 로고    scopus 로고
    • Nucleoid occlusion and bacterial cell division
    • Wu, L.J. & J. Errington 2012. Nucleoid occlusion and bacterial cell division. Nat. Rev. Microbiol. 10: 8-12.
    • (2012) Nat. Rev. Microbiol. , vol.10 , pp. 8-12
    • Wu, L.J.1    Errington, J.2
  • 82
    • 0020054652 scopus 로고
    • On the precision and accuracy achieved by Escherichia coli cells at fission about their middle
    • Trueba, F.J. 1982. On the precision and accuracy achieved by Escherichia coli cells at fission about their middle. Arch. Microbiol. 131: 55-59.
    • (1982) Arch. Microbiol. , vol.131 , pp. 55-59
    • Trueba, F.J.1
  • 83
    • 0032895234 scopus 로고    scopus 로고
    • FtsZ ring clusters in min and partition mutants: role of both the Min system and the nucleoid in regulating FtsZ ring localization
    • Yu, X.C. & W. Margolin 1999. FtsZ ring clusters in min and partition mutants: role of both the Min system and the nucleoid in regulating FtsZ ring localization. Mol. Microbiol. 32: 315-326.
    • (1999) Mol. Microbiol. , vol.32 , pp. 315-326
    • Yu, X.C.1    Margolin, W.2
  • 84
    • 84860822838 scopus 로고    scopus 로고
    • Robustness and accuracy of cell division in Escherichia coli in diverse cell shapes
    • Mannik, J., F. Wu, F.J. Hol, et al. 2012. Robustness and accuracy of cell division in Escherichia coli in diverse cell shapes. Proc. Natl. Acad. Sci. USA 109: 6957-6962.
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 6957-6962
    • Mannik, J.1    Wu, F.2    Hol, F.J.3
  • 85
    • 15944362608 scopus 로고    scopus 로고
    • Maturation of the Escherichia coli divisome occurs in two steps
    • Aarsman, M.E., A. Piette, C. Fraipont, et al. 2005. Maturation of the Escherichia coli divisome occurs in two steps. Mol. Microbiol. 55: 1631-1645.
    • (2005) Mol. Microbiol. , vol.55 , pp. 1631-1645
    • Aarsman, M.E.1    Piette, A.2    Fraipont, C.3
  • 86
    • 79958782165 scopus 로고    scopus 로고
    • Assembly of the Caulobacter cell division machine
    • Goley, E.D., Y.C. Yeh, S.H. Hong, et al. 2011. Assembly of the Caulobacter cell division machine. Mol. Microbiol. 80: 1680-1698.
    • (2011) Mol. Microbiol. , vol.80 , pp. 1680-1698
    • Goley, E.D.1    Yeh, Y.C.2    Hong, S.H.3
  • 87
    • 0035853803 scopus 로고    scopus 로고
    • Genetic analysis of the Escherichia coli FtsZ.ZipA interaction in the yeast two-hybrid system. Characterization of FtsZ residues essential for the interactions with ZipA and with FtsA
    • Haney, S.A., E. Glasfeld, C. Hale, et al. 2001. Genetic analysis of the Escherichia coli FtsZ.ZipA interaction in the yeast two-hybrid system. Characterization of FtsZ residues essential for the interactions with ZipA and with FtsA. J. Biol. Chem. 276: 11980-11987.
    • (2001) J. Biol. Chem. , vol.276 , pp. 11980-11987
    • Haney, S.A.1    Glasfeld, E.2    Hale, C.3
  • 88
    • 15744385269 scopus 로고    scopus 로고
    • Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA
    • Pichoff, S. & J. Lutkenhaus 2005. Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA. Mol. Microbiol. 55: 1722-1734.
    • (2005) Mol. Microbiol. , vol.55 , pp. 1722-1734
    • Pichoff, S.1    Lutkenhaus, J.2
  • 89
    • 84857738215 scopus 로고    scopus 로고
    • Key role of two terminal domains in the bidirectional polymerization of FtsA protein
    • Krupka, M., G. Rivas, A.I. Rico, et al. 2012. Key role of two terminal domains in the bidirectional polymerization of FtsA protein. J. Biol. Chem. 287: 7756-7765.
    • (2012) J. Biol. Chem. , vol.287 , pp. 7756-7765
    • Krupka, M.1    Rivas, G.2    Rico, A.I.3
  • 90
    • 84861151969 scopus 로고    scopus 로고
    • FtsA forms actin-like protofilaments
    • Szwedziak, P., Q. Wang, S.M. Freund, et al. 2012. FtsA forms actin-like protofilaments. EMBO J. 31: 2249-2260.
    • (2012) EMBO J. , vol.31 , pp. 2249-2260
    • Szwedziak, P.1    Wang, Q.2    Freund, S.M.3
  • 91
    • 77955449195 scopus 로고    scopus 로고
    • Membrane potential is important for bacterial cell division
    • Strahl, H. & L.W. Hamoen 2010. Membrane potential is important for bacterial cell division. Proc. Natl. Acad. Sci. USA 107: 12281-12286.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 12281-12286
    • Strahl, H.1    Hamoen, L.W.2
  • 92
    • 84864018985 scopus 로고    scopus 로고
    • Identification of ZapD as a cell division factor that promotes the assembly of FtsZ in Escherichia coli
    • Durand-Heredia, J., E. Rivkin, G. Fan, et al. 2012. Identification of ZapD as a cell division factor that promotes the assembly of FtsZ in Escherichia coli. J. Bacteriol. 194: 3189-3198.
    • (2012) J. Bacteriol. , vol.194 , pp. 3189-3198
    • Durand-Heredia, J.1    Rivkin, E.2    Fan, G.3
  • 93
    • 0036791675 scopus 로고    scopus 로고
    • A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ
    • Gueiros-Filho, F.J. & R. Losick 2002. A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ. Genes Dev. 16: 2544-2556.
    • (2002) Genes Dev. , vol.16 , pp. 2544-2556
    • Gueiros-Filho, F.J.1    Losick, R.2
  • 94
    • 4344620117 scopus 로고    scopus 로고
    • The crystal structure of ZapA and its modulation of FtsZ polymerisation
    • Low, H.H., M.C. Moncrieffe & J. Lowe 2004. The crystal structure of ZapA and its modulation of FtsZ polymerisation. J. Mol. Biol. 341: 839-852.
    • (2004) J. Mol. Biol. , vol.341 , pp. 839-852
    • Low, H.H.1    Moncrieffe, M.C.2    Lowe, J.3
  • 95
    • 41749083933 scopus 로고    scopus 로고
    • Novel coiled-coil cell division factor ZapB stimulates Z ring assembly and cell division
    • Ebersbach, G., E. Galli, J. Moller-Jensen, et al. 2008. Novel coiled-coil cell division factor ZapB stimulates Z ring assembly and cell division. Mol. Microbiol. 68: 720-735.
    • (2008) Mol. Microbiol. , vol.68 , pp. 720-735
    • Ebersbach, G.1    Galli, E.2    Moller-Jensen, J.3
  • 96
    • 84855881444 scopus 로고    scopus 로고
    • FtsZ-ZapA-ZapB interactome of Escherichia coli
    • Galli, E. & K. Gerdes 2012. FtsZ-ZapA-ZapB interactome of Escherichia coli. J. Bacteriol. 194: 292-302.
    • (2012) J. Bacteriol. , vol.194 , pp. 292-302
    • Galli, E.1    Gerdes, K.2
  • 97
    • 77953494296 scopus 로고    scopus 로고
    • Spatial resolution of two bacterial cell division proteins: ZapA recruits ZapB to the inner face of the Z-ring
    • Galli, E. & K. Gerdes 2010. Spatial resolution of two bacterial cell division proteins: ZapA recruits ZapB to the inner face of the Z-ring. Mol. Microbiol. 76: 1514-1526.
    • (2010) Mol. Microbiol. , vol.76 , pp. 1514-1526
    • Galli, E.1    Gerdes, K.2
  • 98
    • 84864147092 scopus 로고    scopus 로고
    • A MatP-divisome interaction coordinates chromosome segregation with cell division in E. coli
    • Espeli, O., R. Borne, P. Dupaigne, et al. 2012. A MatP-divisome interaction coordinates chromosome segregation with cell division in E. coli. EMBO J. 31: 3198-3211.
    • (2012) EMBO J. , vol.31 , pp. 3198-3211
    • Espeli, O.1    Borne, R.2    Dupaigne, P.3
  • 99
    • 79952403634 scopus 로고    scopus 로고
    • Identification and characterization of ZapC, a stabilizer of the FtsZ ring in Escherichia coli
    • Durand-Heredia, J.M., H.H. Yu, S. De Carlo, et al. 2011. Identification and characterization of ZapC, a stabilizer of the FtsZ ring in Escherichia coli. J. Bacteriol. 193: 1405-1413.
    • (2011) J. Bacteriol. , vol.193 , pp. 1405-1413
    • Durand-Heredia, J.M.1    Yu, H.H.2    De Carlo, S.3
  • 100
    • 79952401787 scopus 로고    scopus 로고
    • Identification of Escherichia coli ZapC (YcbW) as a component of the division apparatus that binds and bundles FtsZ polymers
    • Hale, C.A., D. Shiomi, B. Liu, et al. 2011. Identification of Escherichia coli ZapC (YcbW) as a component of the division apparatus that binds and bundles FtsZ polymers. J. Bacteriol. 193: 1393-1404.
    • (2011) J. Bacteriol. , vol.193 , pp. 1393-1404
    • Hale, C.A.1    Shiomi, D.2    Liu, B.3
  • 101
    • 69249126551 scopus 로고    scopus 로고
    • Bacterial cell division: assembly, maintenance and disassembly of the Z ring
    • Adams, D.W. & J. Errington 2009. Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat. Rev. Microbiol. 7: 642-653.
    • (2009) Nat. Rev. Microbiol. , vol.7 , pp. 642-653
    • Adams, D.W.1    Errington, J.2
  • 102
    • 67549107869 scopus 로고    scopus 로고
    • ATP-binding site lesions in FtsE impair cell division
    • Arends, S.J., R.J. Kustusch & D.S. Weiss 2009. ATP-binding site lesions in FtsE impair cell division. J. Bacteriol. 191: 3772-3784.
    • (2009) J. Bacteriol. , vol.191 , pp. 3772-3784
    • Arends, S.J.1    Kustusch, R.J.2    Weiss, D.S.3
  • 103
    • 34247859209 scopus 로고    scopus 로고
    • Interaction between cell division proteins FtsE and FtsZ
    • Corbin, B.D., Y. Wang, T.K. Beuria, et al. 2007. Interaction between cell division proteins FtsE and FtsZ. J. Bacteriol. 189: 3026-3035.
    • (2007) J. Bacteriol. , vol.189 , pp. 3026-3035
    • Corbin, B.D.1    Wang, Y.2    Beuria, T.K.3
  • 104
    • 0032904859 scopus 로고    scopus 로고
    • Molecular characterization of Escherichia coli FtsE and FtsX
    • de Leeuw, E, B. Graham, G.J. Phillips, et al. 1999. Molecular characterization of Escherichia coli FtsE and FtsX. Mol. Microbiol. 31: 983-993.
    • (1999) Mol. Microbiol. , vol.31 , pp. 983-993
    • De Leeuw, E.1    Graham, B.2    Phillips, G.J.3
  • 105
    • 7744230898 scopus 로고    scopus 로고
    • Z-ring-independent interaction between a subdomain of FtsA and late septation proteins as revealed by a polar recruitment assay
    • Corbin, B.D., B. Geissler, M. Sadasivam, et al. 2004. Z-ring-independent interaction between a subdomain of FtsA and late septation proteins as revealed by a polar recruitment assay. J. Bacteriol. 186: 7736-7744.
    • (2004) J. Bacteriol. , vol.186 , pp. 7736-7744
    • Corbin, B.D.1    Geissler, B.2    Sadasivam, M.3
  • 106
    • 33845944955 scopus 로고    scopus 로고
    • Role of FtsEX in cell division of Escherichia coli: viability of ftsEX mutants is dependent on functional SufI or high osmotic strength
    • Reddy, M. 2007. Role of FtsEX in cell division of Escherichia coli: viability of ftsEX mutants is dependent on functional SufI or high osmotic strength. J. Bacteriol. 189: 98-108.
    • (2007) J. Bacteriol. , vol.189 , pp. 98-108
    • Reddy, M.1
  • 107
    • 0034740520 scopus 로고    scopus 로고
    • FtsQ, FtsL and FtsI require FtsK, but not FtsN, for co-localization with FtsZ during Escherichia coli cell division
    • Chen, J.C. & J. Beckwith 2001. FtsQ, FtsL and FtsI require FtsK, but not FtsN, for co-localization with FtsZ during Escherichia coli cell division. Mol. Microbiol. 42: 395-413.
    • (2001) Mol. Microbiol. , vol.42 , pp. 395-413
    • Chen, J.C.1    Beckwith, J.2
  • 108
    • 0037783310 scopus 로고    scopus 로고
    • The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway
    • Bernhardt, T.G. & P.A. de Boer 2003. The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway. Mol. Microbiol. 48: 1171-1182.
    • (2003) Mol. Microbiol. , vol.48 , pp. 1171-1182
    • Bernhardt, T.G.1    de Boer, P.A.2
  • 109
    • 77951470447 scopus 로고    scopus 로고
    • Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis
    • Uehara, T., K.R. Parzych, T. Dinh, et al. 2010. Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. EMBO J. 29: 1412-1422.
    • (2010) EMBO J. , vol.29 , pp. 1412-1422
    • Uehara, T.1    Parzych, K.R.2    Dinh, T.3
  • 110
    • 67749117916 scopus 로고    scopus 로고
    • LytM-domain factors are required for daughter cell separation and rapid ampicillin-induced lysis in Escherichia coli
    • Uehara, T., T. Dinh & T.G. Bernhardt 2009. LytM-domain factors are required for daughter cell separation and rapid ampicillin-induced lysis in Escherichia coli. J. Bacteriol. 191: 5094-5107.
    • (2009) J. Bacteriol. , vol.191 , pp. 5094-5107
    • Uehara, T.1    Dinh, T.2    Bernhardt, T.G.3
  • 111
    • 0346252349 scopus 로고    scopus 로고
    • Use of a two-hybrid assay to study the assembly of a complex multicomponent protein machinery: bacterial septosome differentiation
    • Di Lallo, G., M. Fagioli, D. Barionovi, et al. 2003. Use of a two-hybrid assay to study the assembly of a complex multicomponent protein machinery: bacterial septosome differentiation. Microbiology 149: 3353-3359.
    • (2003) Microbiology , vol.149 , pp. 3353-3359
    • Di Lallo, G.1    Fagioli, M.2    Barionovi, D.3
  • 112
    • 51349131943 scopus 로고    scopus 로고
    • The Escherichia coli FtsK functional domains involved in its interaction with its divisome protein partners
    • Grenga, L., G. Luzi, L. Paolozzi, et al. 2008. The Escherichia coli FtsK functional domains involved in its interaction with its divisome protein partners. FEMS Microbiol. Lett 287: 163-167.
    • (2008) FEMS Microbiol. Lett , vol.287 , pp. 163-167
    • Grenga, L.1    Luzi, G.2    Paolozzi, L.3
  • 113
    • 15244361175 scopus 로고    scopus 로고
    • Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis
    • Karimova, G., N. Dautin & D. Ladant 2005. Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J. Bacteriol. 187: 2233-2243.
    • (2005) J. Bacteriol. , vol.187 , pp. 2233-2243
    • Karimova, G.1    Dautin, N.2    Ladant, D.3
  • 114
    • 0037169328 scopus 로고    scopus 로고
    • FtsK Is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases
    • Aussel, L., F.X. Barre, M. Aroyo, et al. 2002. FtsK Is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases. Cell 108: 195-205.
    • (2002) Cell , vol.108 , pp. 195-205
    • Aussel, L.1    Barre, F.X.2    Aroyo, M.3
  • 115
    • 49349104892 scopus 로고    scopus 로고
    • Molecular mechanism of sequence-directed DNA loading and translocation by FtsK
    • Löwe, J., A. Ellonen, M.D. Allen, et al. 2008. Molecular mechanism of sequence-directed DNA loading and translocation by FtsK. Mol. Cell 31: 498-509.
    • (2008) Mol. Cell , vol.31 , pp. 498-509
    • Löwe, J.1    Ellonen, A.2    Allen, M.D.3
  • 116
    • 26944444295 scopus 로고    scopus 로고
    • Evidence for functional overlap among multiple bacterial cell division proteins: compensating for the loss of FtsK
    • Geissler, B. & W. Margolin 2005. Evidence for functional overlap among multiple bacterial cell division proteins: compensating for the loss of FtsK. Mol. Microbiol. 58: 596-612.
    • (2005) Mol. Microbiol. , vol.58 , pp. 596-612
    • Geissler, B.1    Margolin, W.2
  • 117
    • 0031786575 scopus 로고    scopus 로고
    • Role of the C terminus of FtsK in Escherichia coli chromosome segregation
    • Yu, X.C., E.K. Weihe & W. Margolin 1998. Role of the C terminus of FtsK in Escherichia coli chromosome segregation. J. Bacteriol. 180: 6424-6428.
    • (1998) J. Bacteriol. , vol.180 , pp. 6424-6428
    • Yu, X.C.1    Weihe, E.K.2    Margolin, W.3
  • 118
    • 2942570076 scopus 로고    scopus 로고
    • A complex of the Escherichia coli cell division proteins FtsL, FtsB and FtsQ forms independently of its localization to the septal region
    • Buddelmeijer, N. & J. Beckwith 2004. A complex of the Escherichia coli cell division proteins FtsL, FtsB and FtsQ forms independently of its localization to the septal region. Mol. Microbiol. 52: 1315-1327.
    • (2004) Mol. Microbiol. , vol.52 , pp. 1315-1327
    • Buddelmeijer, N.1    Beckwith, J.2
  • 119
    • 0036176969 scopus 로고    scopus 로고
    • Analysis of ftsQ mutant alleles in Escherichia coli: complementation, septal localization, and recruitment of downstream cell division proteins
    • Chen, J.C., M. Minev & J. Beckwith 2002. Analysis of ftsQ mutant alleles in Escherichia coli: complementation, septal localization, and recruitment of downstream cell division proteins. J. Bacteriol. 184: 695-705.
    • (2002) J. Bacteriol. , vol.184 , pp. 695-705
    • Chen, J.C.1    Minev, M.2    Beckwith, J.3
  • 120
    • 39149129764 scopus 로고    scopus 로고
    • Structural and mutational analysis of the cell division protein FtsQ
    • van den Ent, F., T.M. Vinkenvleugel, A. Ind, et al. 2008. Structural and mutational analysis of the cell division protein FtsQ. Mol. Microbiol. 68: 110-123.
    • (2008) Mol. Microbiol. , vol.68 , pp. 110-123
    • Van Den Ent, F.1    Vinkenvleugel, T.M.2    Ind, A.3
  • 121
    • 77952577603 scopus 로고    scopus 로고
    • Multiple interaction domains in FtsL, a protein component of the widely conserved bacterial FtsLBQ cell division complex
    • Gonzalez, M.D., E.A. Akbay, D. Boyd, et al. 2010. Multiple interaction domains in FtsL, a protein component of the widely conserved bacterial FtsLBQ cell division complex. J. Bacteriol. 192: 2757-2768.
    • (2010) J. Bacteriol. , vol.192 , pp. 2757-2768
    • Gonzalez, M.D.1    Akbay, E.A.2    Boyd, D.3
  • 122
    • 79958292223 scopus 로고    scopus 로고
    • A model for the Escherichia coli FtsB/FtsL/FtsQ cell division complex
    • Villanelo, F., A. Ordenes, J. Brunet, et al. 2011. A model for the Escherichia coli FtsB/FtsL/FtsQ cell division complex. BMC Struct. Biol 11: 28.
    • (2011) BMC Struct. Biol , vol.11 , pp. 28
    • Villanelo, F.1    Ordenes, A.2    Brunet, J.3
  • 123
    • 70350437278 scopus 로고    scopus 로고
    • Central domain of DivIB caps the C-terminal regions of the FtsL/DivIC coiled-coil rod
    • Masson, S., T. Kern, A. Le Gouellec, et al. 2009. Central domain of DivIB caps the C-terminal regions of the FtsL/DivIC coiled-coil rod. J. Biol. Chem. 284: 27687-27700.
    • (2009) J. Biol. Chem. , vol.284 , pp. 27687-27700
    • Masson, S.1    Kern, T.2    Le Gouellec, A.3
  • 124
    • 33745195461 scopus 로고    scopus 로고
    • Premature targeting of cell division proteins to midcell reveals hierarchies of protein interactions involved in divisome assembly
    • Goehring, N.W., M.D. Gonzalez & J. Beckwith 2006. Premature targeting of cell division proteins to midcell reveals hierarchies of protein interactions involved in divisome assembly. Mol. Microbiol. 61: 33-45.
    • (2006) Mol. Microbiol. , vol.61 , pp. 33-45
    • Goehring, N.W.1    Gonzalez, M.D.2    Beckwith, J.3
  • 125
    • 0037195381 scopus 로고    scopus 로고
    • Topological characterization of the essential Escherichia coli cell division protein FtsW
    • Lara, B. & J.A. Ayala 2002. Topological characterization of the essential Escherichia coli cell division protein FtsW. FEMS Microbiol. Lett 216: 23-32.
    • (2002) FEMS Microbiol. Lett , vol.216 , pp. 23-32
    • Lara, B.1    Ayala, J.A.2
  • 126
    • 77954376358 scopus 로고    scopus 로고
    • Direct interactions of early and late assembling division proteins in Escherichia coli cells resolved by FRET
    • Alexeeva, S., T.W. Gadella, Jr., J. Verheul, et al. 2010. Direct interactions of early and late assembling division proteins in Escherichia coli cells resolved by FRET. Mol. Microbiol. 77: 384-398.
    • (2010) Mol. Microbiol. , vol.77 , pp. 384-398
    • Alexeeva, S.1    Gadella Jr., T.W.2    Verheul, J.3
  • 127
    • 78650738448 scopus 로고    scopus 로고
    • The integral membrane FtsW protein and peptidoglycan synthase PBP3 form a subcomplex in Escherichia coli
    • Fraipont, C., S. Alexeeva, B. Wolf, et al. 2011. The integral membrane FtsW protein and peptidoglycan synthase PBP3 form a subcomplex in Escherichia coli. Microbiology 157: 251-259.
    • (2011) Microbiology , vol.157 , pp. 251-259
    • Fraipont, C.1    Alexeeva, S.2    Wolf, B.3
  • 128
    • 0036155122 scopus 로고    scopus 로고
    • The Escherichia coli cell division protein FtsW is required to recruit its cognate transpeptidase, FtsI (PBP3), to the division site
    • Mercer, K.L. & D.S. Weiss 2002. The Escherichia coli cell division protein FtsW is required to recruit its cognate transpeptidase, FtsI (PBP3), to the division site. J. Bacteriol. 184: 904-912.
    • (2002) J. Bacteriol. , vol.184 , pp. 904-912
    • Mercer, K.L.1    Weiss, D.S.2
  • 129
    • 37548998632 scopus 로고    scopus 로고
    • The essential cell division protein FtsN interacts with the murein (peptidoglycan) synthase PBP1B in Escherichia coli
    • Müller, P., C. Ewers, U. Bertsche, et al. 2007. The essential cell division protein FtsN interacts with the murein (peptidoglycan) synthase PBP1B in Escherichia coli. J. Biol. Chem 282: 36394-36402.
    • (2007) J. Biol. Chem , vol.282 , pp. 36394-36402
    • Müller, P.1    Ewers, C.2    Bertsche, U.3
  • 130
    • 53849143253 scopus 로고    scopus 로고
    • Localization of PBP3 in Caulobacter crescentus is highly dynamic and largely relies on its functional transpeptidase domain
    • Costa, T., R. Priyadarshini & C. Jacobs-Wagner 2008. Localization of PBP3 in Caulobacter crescentus is highly dynamic and largely relies on its functional transpeptidase domain. Mol. Microbiol. 70: 634-651.
    • (2008) Mol. Microbiol. , vol.70 , pp. 634-651
    • Costa, T.1    Priyadarshini, R.2    Jacobs-Wagner, C.3
  • 131
    • 65549119201 scopus 로고    scopus 로고
    • FtsN-like proteins are conserved components of the cell division machinery in proteobacteria
    • Möll, A. & M. Thanbichler 2009. FtsN-like proteins are conserved components of the cell division machinery in proteobacteria. Mol. Microbiol. 72: 1037-1053.
    • (2009) Mol. Microbiol. , vol.72 , pp. 1037-1053
    • Möll, A.1    Thanbichler, M.2
  • 132
    • 84861204197 scopus 로고    scopus 로고
    • The early divisome protein FtsA interacts directly through its 1c subdomain with the cytoplasmic domain of the late divisome protein FtsN
    • Busiek, K.K., J.M. Eraso, Y. Wang, et al. 2012. The early divisome protein FtsA interacts directly through its 1c subdomain with the cytoplasmic domain of the late divisome protein FtsN. J. Bacteriol. 194: 1989-2000.
    • (2012) J. Bacteriol. , vol.194 , pp. 1989-2000
    • Busiek, K.K.1    Eraso, J.M.2    Wang, Y.3
  • 133
    • 2442631494 scopus 로고    scopus 로고
    • Solution structure and domain architecture of the divisome protein FtsN
    • Yang, J.C., F. Van Den Ent, D. Neuhaus, et al. 2004. Solution structure and domain architecture of the divisome protein FtsN. Mol. Microbiol. 52: 651-660.
    • (2004) Mol. Microbiol. , vol.52 , pp. 651-660
    • Yang, J.C.1    Van Den Ent, F.2    Neuhaus, D.3
  • 134
    • 4944223117 scopus 로고    scopus 로고
    • Murein (peptidoglycan) binding property of the essential cell division protein FtsN from Escherichia coli
    • Ursinus, A., F. van den Ent, S. Brechtel, et al. 2004. Murein (peptidoglycan) binding property of the essential cell division protein FtsN from Escherichia coli. J. Bacteriol. 186: 6728-6737.
    • (2004) J. Bacteriol. , vol.186 , pp. 6728-6737
    • Ursinus, A.1    Van Den Ent, F.2    Brechtel, S.3
  • 135
    • 73849120353 scopus 로고    scopus 로고
    • Discovery and characterization of three new Escherichia coli septal ring proteins that contain a SPOR domain: DamX, DedD, and RlpA
    • Arends, S.J., K. Williams, R.J. Scott, et al. 2010. Discovery and characterization of three new Escherichia coli septal ring proteins that contain a SPOR domain: DamX, DedD, and RlpA. J. Bacteriol. 192: 242-255.
    • (2010) J. Bacteriol. , vol.192 , pp. 242-255
    • Arends, S.J.1    Williams, K.2    Scott, R.J.3
  • 136
    • 72449160318 scopus 로고    scopus 로고
    • Self-enhanced accumulation of FtsN at division sites and roles for other proteins with a SPOR domain (DamX, DedD, and RlpA) in Escherichia coli cell constriction
    • Gerding, M.A., B. Liu, F.O. Bendezu, et al. 2009. Self-enhanced accumulation of FtsN at division sites and roles for other proteins with a SPOR domain (DamX, DedD, and RlpA) in Escherichia coli cell constriction. J. Bacteriol. 191: 7383-7401.
    • (2009) J. Bacteriol. , vol.191 , pp. 7383-7401
    • Gerding, M.A.1    Liu, B.2    Bendezu, F.O.3
  • 137
    • 34249811807 scopus 로고    scopus 로고
    • An altered FtsA can compensate for the loss of essential cell division protein FtsN in Escherichia coli
    • Bernard, C.S., M. Sadasivam, D. Shiomi, et al. 2007. An altered FtsA can compensate for the loss of essential cell division protein FtsN in Escherichia coli. Mol. Microbiol. 64: 1289-1305.
    • (2007) Mol. Microbiol. , vol.64 , pp. 1289-1305
    • Bernard, C.S.1    Sadasivam, M.2    Shiomi, D.3
  • 138
    • 77951562635 scopus 로고    scopus 로고
    • Role of Escherichia coli FtsN protein in the assembly and stability of the cell division ring
    • Rico, A.I., M. Garcia-Ovalle, P. Palacios, et al. 2010. Role of Escherichia coli FtsN protein in the assembly and stability of the cell division ring. Mol. Microbiol. 76: 760-771.
    • (2010) Mol. Microbiol. , vol.76 , pp. 760-771
    • Rico, A.I.1    Garcia-Ovalle, M.2    Palacios, P.3
  • 139
    • 59149092772 scopus 로고    scopus 로고
    • The Escherichia coli cell division protein and model Tat substrate SufI (FtsP) localizes to the septal ring and has a multicopper oxidase-like structure
    • Tarry, M., S.J. Arends, P. Roversi, et al. 2009. The Escherichia coli cell division protein and model Tat substrate SufI (FtsP) localizes to the septal ring and has a multicopper oxidase-like structure. J. Mol. Biol. 386: 504-519.
    • (2009) J. Mol. Biol. , vol.386 , pp. 504-519
    • Tarry, M.1    Arends, S.J.2    Roversi, P.3
  • 140
    • 36549022665 scopus 로고    scopus 로고
    • Role of SufI (FtsP) in cell division of Escherichia coli: evidence for its involvement in stabilizing the assembly of the divisome
    • Samaluru, H., L. SaiSree & M. Reddy 2007. Role of SufI (FtsP) in cell division of Escherichia coli: evidence for its involvement in stabilizing the assembly of the divisome. J. Bacteriol. 189: 8044-8052.
    • (2007) J. Bacteriol. , vol.189 , pp. 8044-8052
    • Samaluru, H.1    SaiSree, L.2    Reddy, M.3
  • 141
    • 16244387909 scopus 로고    scopus 로고
    • Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space
    • Matias, V.R. & T.J. Beveridge 2005. Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol. Microbiol. 56: 240-251.
    • (2005) Mol. Microbiol. , vol.56 , pp. 240-251
    • Matias, V.R.1    Beveridge, T.J.2
  • 142
    • 33947282277 scopus 로고    scopus 로고
    • Cryo-electron microscopy of cell division in Staphylococcus aureus reveals a mid-zone between nascent cross walls
    • Matias, V.R. & T.J. Beveridge 2007. Cryo-electron microscopy of cell division in Staphylococcus aureus reveals a mid-zone between nascent cross walls. Mol. Microbiol. 64: 195-206.
    • (2007) Mol. Microbiol. , vol.64 , pp. 195-206
    • Matias, V.R.1    Beveridge, T.J.2
  • 143
    • 84859576482 scopus 로고    scopus 로고
    • Control of cell division in Streptococcus pneumoniae by the conserved Ser/Thr protein kinase StkP
    • Beilharz, K., L. Novakova, D. Fadda, et al. 2012. Control of cell division in Streptococcus pneumoniae by the conserved Ser/Thr protein kinase StkP. Proc. Natl. Acad. Sci. USA 109: E905-E913.
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109
    • Beilharz, K.1    Novakova, L.2    Fadda, D.3
  • 144
    • 84856585868 scopus 로고    scopus 로고
    • Mutational dissection of the S/T-kinase StkP reveals crucial roles in cell division of Streptococcus pneumoniae
    • Fleurie, A., C. Cluzel, S. Guiral, et al. 2012. Mutational dissection of the S/T-kinase StkP reveals crucial roles in cell division of Streptococcus pneumoniae. Mol. Microbiol. 83: 746-758.
    • (2012) Mol. Microbiol. , vol.83 , pp. 746-758
    • Fleurie, A.1    Cluzel, C.2    Guiral, S.3
  • 145
    • 33750444279 scopus 로고    scopus 로고
    • Evolution of transmembrane protein kinases implicated in coordinating remodeling of gram-positive peptidoglycan: inside versus outside
    • Jones, G. & P. Dyson 2006. Evolution of transmembrane protein kinases implicated in coordinating remodeling of gram-positive peptidoglycan: inside versus outside. J. Bacteriol. 188: 7470-7476.
    • (2006) J. Bacteriol. , vol.188 , pp. 7470-7476
    • Jones, G.1    Dyson, P.2
  • 146
    • 0030876575 scopus 로고    scopus 로고
    • The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division
    • Edwards, D.H. & J. Errington 1997. The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol. Microbiol. 24: 905-915.
    • (1997) Mol. Microbiol. , vol.24 , pp. 905-915
    • Edwards, D.H.1    Errington, J.2
  • 147
    • 0037228462 scopus 로고    scopus 로고
    • Polar targeting of DivIVA in Bacillus subtilis is not directly dependent on FtsZ or PBP 2B
    • Hamoen, L.W. & J. Errington 2003. Polar targeting of DivIVA in Bacillus subtilis is not directly dependent on FtsZ or PBP 2B. J. Bacteriol. 185: 693-697.
    • (2003) J. Bacteriol. , vol.185 , pp. 693-697
    • Hamoen, L.W.1    Errington, J.2
  • 148
    • 0032213104 scopus 로고    scopus 로고
    • Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site
    • Marston, A.L., H.B. Thomaides, D.H. Edwards, et al. 1998. Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev 12: 3419-3430.
    • (1998) Genes Dev , vol.12 , pp. 3419-3430
    • Marston, A.L.1    Thomaides, H.B.2    Edwards, D.H.3
  • 149
    • 68249141791 scopus 로고    scopus 로고
    • Localisation of DivIVA by targeting to negatively curved membranes
    • Lenarcic, R., S. Halbedel, L. Visser, et al. 2009. Localisation of DivIVA by targeting to negatively curved membranes. EMBO J. 28: 2272-2282.
    • (2009) EMBO J. , vol.28 , pp. 2272-2282
    • Lenarcic, R.1    Halbedel, S.2    Visser, L.3
  • 150
    • 81055124808 scopus 로고    scopus 로고
    • EzrA contributes to the regulation of cell size in Staphylococcus aureus
    • Jorge, A.M., E. Hoiczyk, J.P. Gomes, et al. 2011. EzrA contributes to the regulation of cell size in Staphylococcus aureus. PloS One 6: e27542.
    • (2011) PloS One , vol.6
    • Jorge, A.M.1    Hoiczyk, E.2    Gomes, J.P.3
  • 151
    • 0033578438 scopus 로고    scopus 로고
    • Identification and characterization of a negative regulator of FtsZ ring formation in Bacillus subtilis
    • Levin, P.A., I.G. Kurtser & A.D. Grossman 1999. Identification and characterization of a negative regulator of FtsZ ring formation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 96: 9642-9647.
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 9642-9647
    • Levin, P.A.1    Kurtser, I.G.2    Grossman, A.D.3
  • 152
    • 79954426522 scopus 로고    scopus 로고
    • Multiple essential roles for EzrA in cell division of Staphylococcus aureus
    • Steele, V.R., A.L. Bottomley, J. Garcia-Lara, et al. 2011. Multiple essential roles for EzrA in cell division of Staphylococcus aureus. Mol. Microbiol. 80: 542-555.
    • (2011) Mol. Microbiol. , vol.80 , pp. 542-555
    • Steele, V.R.1    Bottomley, A.L.2    Garcia-Lara, J.3
  • 153
    • 2442546546 scopus 로고    scopus 로고
    • EzrA prevents aberrant cell division by modulating assembly of the cytoskeletal protein FtsZ
    • Haeusser, D.P., R.L. Schwartz, A.M. Smith, et al. 2004. EzrA prevents aberrant cell division by modulating assembly of the cytoskeletal protein FtsZ. Mol. Microbiol. 52: 801-814.
    • (2004) Mol. Microbiol. , vol.52 , pp. 801-814
    • Haeusser, D.P.1    Schwartz, R.L.2    Smith, A.M.3
  • 154
    • 34648819672 scopus 로고    scopus 로고
    • A membrane protein, EzrA, regulates assembly dynamics of FtsZ by interacting with the C-terminal tail of FtsZ
    • Singh, J.K., R.D. Makde, V. Kumar, et al. 2007. A membrane protein, EzrA, regulates assembly dynamics of FtsZ by interacting with the C-terminal tail of FtsZ. Biochemistry 46: 11013-11022.
    • (2007) Biochemistry , vol.46 , pp. 11013-11022
    • Singh, J.K.1    Makde, R.D.2    Kumar, V.3
  • 155
    • 42549145631 scopus 로고    scopus 로고
    • Control of the cell elongation-division cycle by shuttling of PBP1 protein in Bacillus subtilis
    • Claessen, D., R. Emmins, L.W. Hamoen, et al. 2008. Control of the cell elongation-division cycle by shuttling of PBP1 protein in Bacillus subtilis. Mol. Microbiol. 68: 1029-1046.
    • (2008) Mol. Microbiol. , vol.68 , pp. 1029-1046
    • Claessen, D.1    Emmins, R.2    Hamoen, L.W.3
  • 156
    • 33645055098 scopus 로고    scopus 로고
    • SepF, a novel FtsZ-interacting protein required for a late step in cell division
    • Hamoen, L.W., J.C. Meile, W. de Jong, et al. 2006. SepF, a novel FtsZ-interacting protein required for a late step in cell division. Mol. Microbiol. 59: 989-999.
    • (2006) Mol. Microbiol. , vol.59 , pp. 989-999
    • Hamoen, L.W.1    Meile, J.C.2    de Jong, W.3
  • 157
    • 57649165574 scopus 로고    scopus 로고
    • SepF increases the assembly and bundling of FtsZ polymers and stabilizes FtsZ protofilaments by binding along its length
    • Singh, J.K., R.D. Makde, V. Kumar, et al. 2008. SepF increases the assembly and bundling of FtsZ polymers and stabilizes FtsZ protofilaments by binding along its length. J. Biol. Chem. 283: 31116-31124.
    • (2008) J. Biol. Chem. , vol.283 , pp. 31116-31124
    • Singh, J.K.1    Makde, R.D.2    Kumar, V.3
  • 158
    • 79551614816 scopus 로고    scopus 로고
    • Large ring polymers align FtsZ polymers for normal septum formation
    • Gundogdu, M.E., Y. Kawai, N. Pavlendova, et al. 2011. Large ring polymers align FtsZ polymers for normal septum formation. EMBO J. 30: 617-626.
    • (2011) EMBO J. , vol.30 , pp. 617-626
    • Gundogdu, M.E.1    Kawai, Y.2    Pavlendova, N.3
  • 159
    • 39149144016 scopus 로고    scopus 로고
    • Bacterial peptidoglycan (murein) hydrolases
    • Vollmer, W., B. Joris, P. Charlier, et al. 2008. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol. Rev. 32: 259-286.
    • (2008) FEMS Microbiol. Rev. , vol.32 , pp. 259-286
    • Vollmer, W.1    Joris, B.2    Charlier, P.3
  • 160
    • 79960648176 scopus 로고    scopus 로고
    • Type VI secretion delivers bacteriolytic effectors to target cells
    • Russell, A.B., R.D. Hood, N.K. Bui, et al. 2011. Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475: 343-347.
    • (2011) Nature , vol.475 , pp. 343-347
    • Russell, A.B.1    Hood, R.D.2    Bui, N.K.3
  • 161
    • 84861126596 scopus 로고    scopus 로고
    • A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach
    • Russell, A.B., P. Singh, M. Brittnacher, et al. 2012. A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. Cell Host Microbe 11: 538-549.
    • (2012) Cell Host Microbe , vol.11 , pp. 538-549
    • Russell, A.B.1    Singh, P.2    Brittnacher, M.3
  • 162
    • 84861214451 scopus 로고    scopus 로고
    • Peptidoglycan-modifying enzyme Pgp1 is required for helical cell shape and pathogenicity traits in Campylobacter jejuni
    • Frirdich, E., J. Biboy, C. Adams, et al. 2012. Peptidoglycan-modifying enzyme Pgp1 is required for helical cell shape and pathogenicity traits in Campylobacter jejuni. PLoS Pathog. 8: e1002602.
    • (2012) PLoS Pathog. , vol.8
    • Frirdich, E.1    Biboy, J.2    Adams, C.3
  • 163
    • 0034006505 scopus 로고    scopus 로고
    • Penicillin binding protein 5 affects cell diameter, contour, and morphology of Escherichia coli
    • Nelson, D.E. & K.D. Young 2000. Penicillin binding protein 5 affects cell diameter, contour, and morphology of Escherichia coli. J. Bacteriol. 182: 1714-1721.
    • (2000) J. Bacteriol. , vol.182 , pp. 1714-1721
    • Nelson, D.E.1    Young, K.D.2
  • 164
    • 84861220120 scopus 로고    scopus 로고
    • Multiple peptidoglycan modification networks modulate Helicobacter pylori's cell shape, motility, and colonization potential
    • Sycuro, L.K., T.J. Wyckoff, J. Biboy, et al. 2012. Multiple peptidoglycan modification networks modulate Helicobacter pylori's cell shape, motility, and colonization potential. PLoS Pathog. 8: e1002603.
    • (2012) PLoS Pathog. , vol.8
    • Sycuro, L.K.1    Wyckoff, T.J.2    Biboy, J.3
  • 165
    • 84859443989 scopus 로고    scopus 로고
    • Escherichia coli low-molecular-weight penicillin-binding proteins help orient septal FtsZ, and their absence leads to asymmetric cell division and branching
    • Potluri, L.P., M.A. de Pedro & K.D. Young 2012. Escherichia coli low-molecular-weight penicillin-binding proteins help orient septal FtsZ, and their absence leads to asymmetric cell division and branching. Mol. Microbiol. 84: 203-224.
    • (2012) Mol. Microbiol. , vol.84 , pp. 203-224
    • Potluri, L.P.1    de Pedro, M.A.2    Young, K.D.3
  • 166
    • 46249130782 scopus 로고    scopus 로고
    • Physiological functions of D-alanine carboxypeptidases in Escherichia coli
    • Ghosh, A.S., C. Chowdhury & D.E. Nelson 2008. Physiological functions of D-alanine carboxypeptidases in Escherichia coli. Trends Microbiol. 16: 309-317.
    • (2008) Trends Microbiol. , vol.16 , pp. 309-317
    • Ghosh, A.S.1    Chowdhury, C.2    Nelson, D.E.3
  • 167
    • 77954375639 scopus 로고    scopus 로고
    • Septal and lateral wall localization of PBP5, the major D,D-carboxypeptidase of Escherichia coli, requires substrate recognition and membrane attachment
    • Potluri, L., A. Karczmarek, J. Verheul, et al. 2010. Septal and lateral wall localization of PBP5, the major D, D-carboxypeptidase of Escherichia coli, requires substrate recognition and membrane attachment. Mol. Microbiol. 77: 300-323.
    • (2010) Mol. Microbiol. , vol.77 , pp. 300-323
    • Potluri, L.1    Karczmarek, A.2    Verheul, J.3
  • 168
    • 0027991987 scopus 로고
    • Penicillin-binding protein 7/8 of Escherichia coli is a DD-endopeptidase
    • Romeis, T. & J.-V. Höltje 1994. Penicillin-binding protein 7/8 of Escherichia coli is a DD-endopeptidase. Eur. J. Biochem. 224: 597-604.
    • (1994) Eur. J. Biochem. , vol.224 , pp. 597-604
    • Romeis, T.1    Höltje, J.-V.2
  • 169
    • 6344260684 scopus 로고    scopus 로고
    • Peptidoglycan amidase MepA is a LAS metallopeptidase
    • Marcyjaniak, M., S.G. Odintsov, I. Sabala, et al. 2004. Peptidoglycan amidase MepA is a LAS metallopeptidase. J. Biol. Chem. 279: 43982-43989.
    • (2004) J. Biol. Chem. , vol.279 , pp. 43982-43989
    • Marcyjaniak, M.1    Odintsov, S.G.2    Sabala, I.3
  • 170
    • 10044294976 scopus 로고    scopus 로고
    • Endopeptidase penicillin-binding proteins 4 and 7 play auxiliary roles in determining uniform morphology of Escherichia coli
    • Meberg, B.M., A.L. Paulson, R. Priyadarshini, et al. 2004. Endopeptidase penicillin-binding proteins 4 and 7 play auxiliary roles in determining uniform morphology of Escherichia coli. J. Bacteriol. 186: 8326-8336.
    • (2004) J. Bacteriol. , vol.186 , pp. 8326-8336
    • Meberg, B.M.1    Paulson, A.L.2    Priyadarshini, R.3
  • 171
    • 33746649568 scopus 로고    scopus 로고
    • Daughter cell separation by penicillin-binding proteins and peptidoglycan amidases in Escherichia coli
    • Priyadarshini, R., D.L. Popham & K.D. Young 2006. Daughter cell separation by penicillin-binding proteins and peptidoglycan amidases in Escherichia coli. J. Bacteriol. 188: 5345-5355.
    • (2006) J. Bacteriol. , vol.188 , pp. 5345-5355
    • Priyadarshini, R.1    Popham, D.L.2    Young, K.D.3
  • 172
    • 77953265009 scopus 로고    scopus 로고
    • Peptidoglycan crosslinking relaxation promotes Helicobacter pylori's helical shape and stomach colonization
    • Sycuro, L.K., Z. Pincus, K.D. Gutierrez, et al. 2010. Peptidoglycan crosslinking relaxation promotes Helicobacter pylori's helical shape and stomach colonization. Cell 141: 822-833.
    • (2010) Cell , vol.141 , pp. 822-833
    • Sycuro, L.K.1    Pincus, Z.2    Gutierrez, K.D.3
  • 173
    • 0016726181 scopus 로고
    • Novel type of murein transglycosylase in Escherichia coli
    • Höltje, J.-V., D. Mirelman, N. Sharon, et al. 1975. Novel type of murein transglycosylase in Escherichia coli. J. Bacteriol. 124: 1067-1076.
    • (1975) J. Bacteriol. , vol.124 , pp. 1067-1076
    • Höltje, J.-V.1    Mirelman, D.2    Sharon, N.3
  • 174
    • 0027240681 scopus 로고
    • Characterization of three different lytic transglycosylases in Escherichia coli
    • Romeis, T., W. Vollmer & J.-V. Höltje 1993. Characterization of three different lytic transglycosylases in Escherichia coli. FEMS Microbiol. Lett 111: 141-146.
    • (1993) FEMS Microbiol. Lett , vol.111 , pp. 141-146
    • Romeis, T.1    Vollmer, W.2    Höltje, J.-V.3
  • 175
    • 79953198237 scopus 로고    scopus 로고
    • High-resolution crystal structure of MltE, an outer membrane-anchored endolytic peptidoglycan lytic transglycosylase from Escherichia coli
    • Artola-Recolons, C., C. Carrasco-Lopez, L.I. Llarrull, et al. 2011. High-resolution crystal structure of MltE, an outer membrane-anchored endolytic peptidoglycan lytic transglycosylase from Escherichia coli. Biochemistry 50: 2384-2386.
    • (2011) Biochemistry , vol.50 , pp. 2384-2386
    • Artola-Recolons, C.1    Carrasco-Lopez, C.2    Llarrull, L.I.3
  • 176
    • 0342901668 scopus 로고    scopus 로고
    • Crystal structure of Escherichia coli lytic transglycosylase Slt35 reveals a lysozyme-like catalytic domain with an EF-hand
    • van Asselt, E.J., A.J. Dijkstra, K.H. Kalk, et al. 1999. Crystal structure of Escherichia coli lytic transglycosylase Slt35 reveals a lysozyme-like catalytic domain with an EF-hand. Structure 7: 1167-1180.
    • (1999) Structure , vol.7 , pp. 1167-1180
    • Van Asselt, E.J.1    Dijkstra, A.J.2    Kalk, K.H.3
  • 177
    • 0033609769 scopus 로고    scopus 로고
    • High resolution crystal structures of the Escherichia coli lytic transglycosylase Slt70 and its complex with a peptidoglycan fragment
    • van Asselt, E.J., A.M. Thunnissen & B.W. Dijkstra 1999. High resolution crystal structures of the Escherichia coli lytic transglycosylase Slt70 and its complex with a peptidoglycan fragment. J. Mol. Biol. 291: 877-898.
    • (1999) J. Mol. Biol. , vol.291 , pp. 877-898
    • van Asselt, E.J.1    Thunnissen, A.M.2    Dijkstra, B.W.3
  • 178
    • 24944507285 scopus 로고    scopus 로고
    • Crystal structure of MltA from Escherichia coli reveals a unique lytic transglycosylase fold
    • van Straaten, K.E., B.W. Dijkstra, W. Vollmer, et al. 2005. Crystal structure of MltA from Escherichia coli reveals a unique lytic transglycosylase fold. J. Mol. Biol. 352: 1068-1080.
    • (2005) J. Mol. Biol. , vol.352 , pp. 1068-1080
    • Van Straaten, K.E.1    Dijkstra, B.W.2    Vollmer, W.3
  • 179
    • 0028016512 scopus 로고
    • Specific interaction of penicillin-binding proteins 3 and 7/8 with soluble lytic transglycosylase in Escherichia coli
    • Romeis, T. & J.-V. Höltje 1994. Specific interaction of penicillin-binding proteins 3 and 7/8 with soluble lytic transglycosylase in Escherichia coli. J. Biol. Chem 269: 21603-21607.
    • (1994) J. Biol. Chem , vol.269 , pp. 21603-21607
    • Romeis, T.1    Höltje, J.-V.2
  • 180
    • 0033525526 scopus 로고    scopus 로고
    • Demonstration of molecular interactions between the murein polymerase PBP1B, the lytic transglycosylase MltA, and the scaffolding protein MipA of Escherichia coli
    • Vollmer, W., M. von Rechenberg & J.-V. Höltje 1999. Demonstration of molecular interactions between the murein polymerase PBP1B, the lytic transglycosylase MltA, and the scaffolding protein MipA of Escherichia coli. J. Biol. Chem 274: 6726-6734.
    • (1999) J. Biol. Chem , vol.274 , pp. 6726-6734
    • Vollmer, W.1    von Rechenberg, M.2    Höltje, J.-V.3
  • 181
    • 0034945221 scopus 로고    scopus 로고
    • Involvement of N-acetylmuramyl-L-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli
    • Heidrich, C., M.F. Templin, A. Ursinus, et al. 2001. Involvement of N-acetylmuramyl-L-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli. Mol. Microbiol. 41: 167-178.
    • (2001) Mol. Microbiol. , vol.41 , pp. 167-178
    • Heidrich, C.1    Templin, M.F.2    Ursinus, A.3
  • 182
    • 77249102992 scopus 로고    scopus 로고
    • Specific structural features of the N-acetylmuramoyl-L-alanine amidase AmiD from Escherichia coli and mechanistic implications for enzymes of this family
    • Kerff, F., S. Petrella, F. Mercier, et al. 2010. Specific structural features of the N-acetylmuramoyl-L-alanine amidase AmiD from Escherichia coli and mechanistic implications for enzymes of this family. J. Mol. Biol. 397: 249-259.
    • (2010) J. Mol. Biol. , vol.397 , pp. 249-259
    • Kerff, F.1    Petrella, S.2    Mercier, F.3
  • 183
    • 34547613915 scopus 로고    scopus 로고
    • An anhydro-N-acetylmuramyl-L-alanine amidase with broad specificity tethered to the outer membrane of Escherichia coli
    • Uehara, T. & J.T. Park 2007. An anhydro-N-acetylmuramyl-L-alanine amidase with broad specificity tethered to the outer membrane of Escherichia coli. J. Bacteriol. 189: 5634-5641.
    • (2007) J. Bacteriol. , vol.189 , pp. 5634-5641
    • Uehara, T.1    Park, J.T.2
  • 184
    • 73249119525 scopus 로고    scopus 로고
    • Studying a cell division amidase using defined peptidoglycan substrates
    • Lupoli, T.J., T. Taniguchi, T.S. Wang, et al. 2009. Studying a cell division amidase using defined peptidoglycan substrates. J. Am. Chem. Soc. 131: 18230-18231.
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 18230-18231
    • Lupoli, T.J.1    Taniguchi, T.2    Wang, T.S.3
  • 185
    • 0036843026 scopus 로고    scopus 로고
    • Effects of multiple deletions of murein hydrolases on viability, septum cleavage, and sensitivity to large toxic molecules in Escherichia coli
    • Heidrich, C., A. Ursinus, J. Berger, et al. 2002. Effects of multiple deletions of murein hydrolases on viability, septum cleavage, and sensitivity to large toxic molecules in Escherichia coli. J. Bacteriol. 184: 6093-6099.
    • (2002) J. Bacteriol. , vol.184 , pp. 6093-6099
    • Heidrich, C.1    Ursinus, A.2    Berger, J.3
  • 186
    • 16244380780 scopus 로고    scopus 로고
    • Susceptibility to antibiotics and beta-lactamase induction in murein hydrolase mutants of Escherichia coli
    • Korsak, D., S. Liebscher & W. Vollmer 2005. Susceptibility to antibiotics and beta-lactamase induction in murein hydrolase mutants of Escherichia coli. Antimicrob. Agents Chemother. 49: 1404-1409.
    • (2005) Antimicrob. Agents Chemother. , vol.49 , pp. 1404-1409
    • Korsak, D.1    Liebscher, S.2    Vollmer, W.3
  • 187
    • 44349107842 scopus 로고    scopus 로고
    • Growth of Escherichia coli: significance of peptidoglycan degradation during elongation and septation
    • Uehara, T. & J.T. Park 2008. Growth of Escherichia coli: significance of peptidoglycan degradation during elongation and septation. J. Bacteriol. 190: 3914-3922.
    • (2008) J. Bacteriol. , vol.190 , pp. 3914-3922
    • Uehara, T.1    Park, J.T.2
  • 188
    • 79955031537 scopus 로고    scopus 로고
    • A novel in vivo cell-wall labeling approach sheds new light on peptidoglycan synthesis in Escherichia coli
    • Olrichs, N.K., M.E. Aarsman, J. Verheul, et al. 2011. A novel in vivo cell-wall labeling approach sheds new light on peptidoglycan synthesis in Escherichia coli. Chem. Bio. Chem. 12: 1124-1133.
    • (2011) Chem. Bio. Chem. , vol.12 , pp. 1124-1133
    • Olrichs, N.K.1    Aarsman, M.E.2    Verheul, J.3
  • 189
    • 80052525834 scopus 로고    scopus 로고
    • A fail-safe mechanism in the septal ring assembly pathway generated by the sequential recruitment of cell separation amidases and their activators
    • Peters, N.T., T. Dinh & T.G. Bernhardt 2011. A fail-safe mechanism in the septal ring assembly pathway generated by the sequential recruitment of cell separation amidases and their activators. J. Bacteriol. 193: 4973-4983.
    • (2011) J. Bacteriol. , vol.193 , pp. 4973-4983
    • Peters, N.T.1    Dinh, T.2    Bernhardt, T.G.3
  • 190
    • 81055145336 scopus 로고    scopus 로고
    • An ATP-binding cassette transporter-like complex governs cell-wall hydrolysis at the bacterial cytokinetic ring
    • Yang, D.C., N.T. Peters, K.R. Parzych, et al. 2011. An ATP-binding cassette transporter-like complex governs cell-wall hydrolysis at the bacterial cytokinetic ring. Proc. Natl. Acad. Sci. USA 108: E1052-E1060.
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108
    • Yang, D.C.1    Peters, N.T.2    Parzych, K.R.3
  • 191
    • 84864816426 scopus 로고    scopus 로고
    • A conformational switch controls cell wall-remodelling enzymes required for bacterial cell division
    • Yang, D.C., K. Tan, A. Joachimiak, et al. 2012. A conformational switch controls cell wall-remodelling enzymes required for bacterial cell division. Mol. Microbiol. 85: 768-781
    • (2012) Mol. Microbiol. , vol.85 , pp. 768-781
    • Yang, D.C.1    Tan, K.2    Joachimiak, A.3
  • 192
    • 35348906348 scopus 로고    scopus 로고
    • Biogenesis of the gram-negative bacterial outer membrane
    • Bos, M.P., V. Robert & J. Tommassen 2007. Biogenesis of the gram-negative bacterial outer membrane. Annu. Rev. Microbiol. 61: 191-214.
    • (2007) Annu. Rev. Microbiol. , vol.61 , pp. 191-214
    • Bos, M.P.1    Robert, V.2    Tommassen, J.3
  • 193
    • 79951809756 scopus 로고    scopus 로고
    • The free and bound forms of Lpp occupy distinct subcellular locations in Escherichia coli
    • Cowles, C.E., Y. Li, M.F. Semmelhack, et al. 2011. The free and bound forms of Lpp occupy distinct subcellular locations in Escherichia coli. Mol. Microbiol. 79: 1168-1181.
    • (2011) Mol. Microbiol. , vol.79 , pp. 1168-1181
    • Cowles, C.E.1    Li, Y.2    Semmelhack, M.F.3
  • 194
    • 0031679259 scopus 로고    scopus 로고
    • Escherichia coli tol-pal mutants form outer membrane vesicles
    • Bernadac, A., M. Gavioli, J.C. Lazzaroni, et al. 1998. Escherichia coli tol-pal mutants form outer membrane vesicles. J. Bacteriol. 180: 4872-4878.
    • (1998) J. Bacteriol. , vol.180 , pp. 4872-4878
    • Bernadac, A.1    Gavioli, M.2    Lazzaroni, J.C.3
  • 195
    • 0036180995 scopus 로고    scopus 로고
    • Pal lipoprotein of Escherichia coli plays a major role in outer membrane integrity
    • Cascales, E., A. Bernadac, M. Gavioli, et al. 2002. Pal lipoprotein of Escherichia coli plays a major role in outer membrane integrity. J. Bacteriol. 184: 754-759.
    • (2002) J. Bacteriol. , vol.184 , pp. 754-759
    • Cascales, E.1    Bernadac, A.2    Gavioli, M.3
  • 196
    • 33846650968 scopus 로고    scopus 로고
    • The trans-envelope Tol-Pal complex is part of the cell division machinery and required for proper outer-membrane invagination during cell constriction in E. coli
    • Gerding, M.A., Y. Ogata, N.D. Pecora, et al. 2007. The trans-envelope Tol-Pal complex is part of the cell division machinery and required for proper outer-membrane invagination during cell constriction in E. coli. Mol. Microbiol. 63: 1008-1025.
    • (2007) Mol. Microbiol. , vol.63 , pp. 1008-1025
    • Gerding, M.A.1    Ogata, Y.2    Pecora, N.D.3
  • 197
    • 0035155704 scopus 로고    scopus 로고
    • Organisation and evolution of the tol-pal gene cluster
    • Sturgis, J.N. 2001. Organisation and evolution of the tol-pal gene cluster. J. Mol. Microbiol. Biotechnol. 3: 113-122.
    • (2001) J. Mol. Microbiol. Biotechnol. , vol.3 , pp. 113-122
    • Sturgis, J.N.1
  • 198
    • 0036589166 scopus 로고    scopus 로고
    • The Tol proteins of Escherichia coli and their involvement in the translocation of group A colicins
    • Lazzaroni, J.C., J.F. Dubuisson & A. Vianney 2002. The Tol proteins of Escherichia coli and their involvement in the translocation of group A colicins. Biochim 84: 391-397.
    • (2002) Biochim , vol.84 , pp. 391-397
    • Lazzaroni, J.C.1    Dubuisson, J.F.2    Vianney, A.3
  • 199
    • 0032794147 scopus 로고    scopus 로고
    • Role of TolR N-terminal, central, and C-terminal domains in dimerization and interaction with TolA and tolQ
    • Journet, L., A. Rigal, C. Lazdunski, et al. 1999. Role of TolR N-terminal, central, and C-terminal domains in dimerization and interaction with TolA and tolQ. J. Bacteriol. 181: 4476-4484.
    • (1999) J. Bacteriol. , vol.181 , pp. 4476-4484
    • Journet, L.1    Rigal, A.2    Lazdunski, C.3
  • 200
    • 0032611727 scopus 로고    scopus 로고
    • Circular dichroism and molecular modeling of the E. coli TolA periplasmic domains
    • Derouiche, R., R. Lloubes, S. Sasso, et al. 1999. Circular dichroism and molecular modeling of the E. coli TolA periplasmic domains. Biospectroscopy 5: 189-198.
    • (1999) Biospectroscopy , vol.5 , pp. 189-198
    • Derouiche, R.1    Lloubes, R.2    Sasso, S.3
  • 201
    • 0000046526 scopus 로고    scopus 로고
    • Filamentous phage infection: crystal structure of g3p in complex with its coreceptor, the C-terminal domain of TolA
    • Lubkowski, J., F. Hennecke, A. Pluckthun, et al. 1999. Filamentous phage infection: crystal structure of g3p in complex with its coreceptor, the C-terminal domain of TolA. Structure 7: 711-722.
    • (1999) Structure , vol.7 , pp. 711-722
    • Lubkowski, J.1    Hennecke, F.2    Pluckthun, A.3
  • 202
    • 0033569296 scopus 로고    scopus 로고
    • Structure of the Escherichia coli TolB protein determined by MAD methods at 1.95 A resolution
    • Abergel, C., E. Bouveret, J.M. Claverie, et al. 1999. Structure of the Escherichia coli TolB protein determined by MAD methods at 1.95 A resolution. Structure 7: 1291-1300.
    • (1999) Structure , vol.7 , pp. 1291-1300
    • Abergel, C.1    Bouveret, E.2    Claverie, J.M.3
  • 203
    • 70349205369 scopus 로고    scopus 로고
    • Allosteric beta-propeller signalling in TolB and its manipulation by translocating colicins
    • Bonsor, D.A., O. Hecht, M. Vankemmelbeke, et al. 2009. Allosteric beta-propeller signalling in TolB and its manipulation by translocating colicins. EMBO J. 28: 2846-2857.
    • (2009) EMBO J. , vol.28 , pp. 2846-2857
    • Bonsor, D.A.1    Hecht, O.2    Vankemmelbeke, M.3
  • 204
    • 0029055749 scopus 로고
    • Protein complex within Escherichia coli inner membrane. TolA N-terminal domain interacts with TolQ and TolR proteins
    • Derouiche, R., H. Benedetti, J.C. Lazzaroni, et al. 1995. Protein complex within Escherichia coli inner membrane. TolA N-terminal domain interacts with TolQ and TolR proteins. J. Biol. Chem. 270: 11078-11084.
    • (1995) J. Biol. Chem. , vol.270 , pp. 11078-11084
    • Derouiche, R.1    Benedetti, H.2    Lazzaroni, J.C.3
  • 205
    • 0028928434 scopus 로고
    • Transmembrane alpha-helix interactions are required for the functional assembly of the Escherichia coli Tol complex
    • Lazzaroni, J.C., A. Vianney, J.L. Popot, et al. 1995. Transmembrane alpha-helix interactions are required for the functional assembly of the Escherichia coli Tol complex. J. Mol. Biol. 246: 1-7.
    • (1995) J. Mol. Biol. , vol.246 , pp. 1-7
    • Lazzaroni, J.C.1    Vianney, A.2    Popot, J.L.3
  • 206
    • 77957234943 scopus 로고    scopus 로고
    • TolA modulates the oligomeric status of YbgF in the bacterial periplasm
    • Krachler, A.M., A. Sharma, A. Cauldwell, et al. 2010. TolA modulates the oligomeric status of YbgF in the bacterial periplasm. J. Mol. Biol. 403: 270-285.
    • (2010) J. Mol. Biol. , vol.403 , pp. 270-285
    • Krachler, A.M.1    Sharma, A.2    Cauldwell, A.3
  • 207
    • 0034970708 scopus 로고    scopus 로고
    • Energy-dependent conformational change in the TolA protein of Escherichia coli involves its N-terminal domain, TolQ, and TolR
    • Germon, P., M.C. Ray, A. Vianney, et al. 2001. Energy-dependent conformational change in the TolA protein of Escherichia coli involves its N-terminal domain, TolQ, and TolR. J. Bacteriol. 183: 4110-4114.
    • (2001) J. Bacteriol. , vol.183 , pp. 4110-4114
    • Germon, P.1    Ray, M.C.2    Vianney, A.3
  • 208
    • 0033637616 scopus 로고    scopus 로고
    • Proton motive force drives the interaction of the inner membrane TolA and outer membrane pal proteins in Escherichia coli
    • Cascales, E., M. Gavioli, J.N. Sturgis, et al. 2000. Proton motive force drives the interaction of the inner membrane TolA and outer membrane pal proteins in Escherichia coli. Mol. Microbiol. 38: 904-915.
    • (2000) Mol. Microbiol. , vol.38 , pp. 904-915
    • Cascales, E.1    Gavioli, M.2    Sturgis, J.N.3
  • 209
    • 1242342946 scopus 로고    scopus 로고
    • Deletion analyses of the peptidoglycan-associated lipoprotein Pal reveals three independent binding sequences including a TolA box
    • Cascales, E. & R. Lloubes 2004. Deletion analyses of the peptidoglycan-associated lipoprotein Pal reveals three independent binding sequences including a TolA box. Mol. Microbiol. 51: 873-885.
    • (2004) Mol. Microbiol. , vol.51 , pp. 873-885
    • Cascales, E.1    Lloubes, R.2
  • 210
    • 77956850709 scopus 로고    scopus 로고
    • The Caulobacter Tol-Pal complex is essential for outer membrane integrity and the positioning of a polar localization factor
    • Yeh, Y.C., L.R. Comolli, K.H. Downing, et al. 2010. The Caulobacter Tol-Pal complex is essential for outer membrane integrity and the positioning of a polar localization factor. J. Bacteriol. 192: 4847-4858.
    • (2010) J. Bacteriol. , vol.192 , pp. 4847-4858
    • Yeh, Y.C.1    Comolli, L.R.2    Downing, K.H.3
  • 211
    • 77953995341 scopus 로고    scopus 로고
    • DipM links peptidoglycan remodelling to outer membrane organization in Caulobacter
    • Goley, E.D., L.R. Comolli, K.E. Fero, et al. 2010. DipM links peptidoglycan remodelling to outer membrane organization in Caulobacter. Mol. Microbiol. 77: 56-73.
    • (2010) Mol. Microbiol. , vol.77 , pp. 56-73
    • Goley, E.D.1    Comolli, L.R.2    Fero, K.E.3
  • 212
    • 77953996215 scopus 로고    scopus 로고
    • DipM, a new factor required for peptidoglycan remodelling during cell division in Caulobacter crescentus
    • Möll, A., S. Schlimpert, A. Briegel, et al. 2010. DipM, a new factor required for peptidoglycan remodelling during cell division in Caulobacter crescentus. Mol. Microbiol. 77: 90-107.
    • (2010) Mol. Microbiol. , vol.77 , pp. 90-107
    • Möll, A.1    Schlimpert, S.2    Briegel, A.3
  • 213
    • 77953977302 scopus 로고    scopus 로고
    • A protein critical for cell constriction in the Gram-negative bacterium Caulobacter crescentus localizes at the division site through its peptidoglycan-binding LysM domains
    • Poggio, S., C.N. Takacs, W. Vollmer, et al. 2010. A protein critical for cell constriction in the Gram-negative bacterium Caulobacter crescentus localizes at the division site through its peptidoglycan-binding LysM domains. Mol. Microbiol. 77: 74-89.
    • (2010) Mol. Microbiol. , vol.77 , pp. 74-89
    • Poggio, S.1    Takacs, C.N.2    Vollmer, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.