메뉴 건너뛰기




Volumn Part F129415, Issue , 1994, Pages 328-339

Learning from a consistently ignorant teacher

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATION THEORY; LEARNING ALGORITHMS; LOGIC PROGRAMMING; TEACHING;

EID: 84872739732     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/180139.181170     Document Type: Conference Paper
Times cited : (14)

References (41)
  • 3
    • 0013450466 scopus 로고
    • Learning fc-term DNF formulas using queries and counterexamples
    • Yale University, August
    • Dana Angluin. Learning fc-term DNF formulas using queries and counterexamples. Technical Report YALEU/DCS/RR-559, Yale University, August 1987.
    • (1987) Technical Report YALEU/DCS/RR-559
    • Angluin, D.1
  • 4
    • 0023453626 scopus 로고
    • Learning regular sets from queries and counterexamples
    • November
    • Dana Angluin. Learning regular sets from queries and counterexamples. Information and Computation, 75:87-106, November 1987.
    • (1987) Information and Computation , vol.75 , pp. 87-106
    • Angluin, D.1
  • 5
    • 0025449393 scopus 로고
    • Negative results for equivalence queries
    • Dana Angluin. Negative results for equivalence queries. Machine Learning, 5:121-150, 1990.
    • (1990) Machine Learning , vol.5 , pp. 121-150
    • Angluin, D.1
  • 6
    • 0039818264 scopus 로고
    • Exact learning of μ-DNF formulas with malicious membership queries
    • Yale University, March
    • Dana Angluin. Exact learning of μ-DNF formulas with malicious membership queries. Technical Report YALEU/DCS/TR-1020, Yale University, March 1994.
    • (1994) Technical Report YALEU/DCS/TR-1020
    • Angluin, D.1
  • 7
    • 0000452640 scopus 로고
    • Learning conjunctions of Horn clauses
    • Dana Angluin, Michael Frazier, and Leonard Pitt. Learning conjunctions of Horn clauses. Machine Learning, 9:147-164, 1992.
    • (1992) Machine Learning , vol.9 , pp. 147-164
    • Angluin, D.1    Frazier, M.2    Pitt, L.3
  • 11
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • Dana Angluin and Philip Laird. Learning from noisy examples. Machine Learning, 2(4):343-370, 1988.
    • (1988) Machine Learning , vol.2 , Issue.4 , pp. 343-370
    • Angluin, D.1    Laird, P.2
  • 12
    • 0013446086 scopus 로고
    • Randomly fallible teachers: Learning monotone DNF with an incomplete membership oracle
    • Dana Angluin and Donna K. Slonim. Randomly fallible teachers: Learning monotone DNF with an incomplete membership oracle Machine Learning, 14:7-26, 1994.
    • (1994) Machine Learning , vol.14 , pp. 7-26
    • Angluin, D.1    Slonim, D.K.2
  • 13
    • 0018454769 scopus 로고
    • Fast probabilistic algorithms for Hamiltonian circuits and matchings
    • April
    • Dana Angluin and Leslie G. Valiant. Fast probabilistic algorithms for Hamiltonian circuits and matchings. Journal of Computer and System Sciences, 18(2):155-193, April 1979.
    • (1979) Journal of Computer and System Sciences , vol.18 , Issue.2 , pp. 155-193
    • Angluin, D.1    Valiant, L.G.2
  • 25
    • 0027642076 scopus 로고
    • Exact identification of circuits using fixed points of amplification functions
    • August
    • Sally A. Goldman, Michael J. Kearns, and Robert E. Schapire. Exact identification of circuits using fixed points of amplification functions. SIAM Journal on Computing, 22(4):705-726, August 1993.
    • (1993) SIAM Journal on Computing , vol.22 , Issue.4 , pp. 705-726
    • Goldman, S.A.1    Kearns, M.J.2    Schapire, R.E.3
  • 26
    • 85031086178 scopus 로고
    • Can PAC learning algorithms tolerate random attribute noise?
    • Washington University, Department of Computer Science, July. To appear in Algorthmica
    • Sally A. Goldman and Robert H. Sloan. Can PAC learning algorithms tolerate random attribute noise? Technical Report WUCS-92-25, Washington University, Department of Computer Science, July 1992. To appear in Algorthmica.
    • (1992) Technical Report WUCS-92-25
    • Goldman, S.A.1    Sloan, R.H.2
  • 28
    • 0024766393 scopus 로고
    • Generalizing the PAC model: Sample size bounds from metric dimension-based uniform convergence results
    • October
    • David Haussler. Generalizing the PAC model: sample size bounds from metric dimension-based uniform convergence results. In 30th Annual Symposium on Foundations of Computer Science, pages 40-45, October 1989.
    • (1989) 30th Annual Symposium on Foundations of Computer Science , pp. 40-45
    • Haussler, D.1
  • 30
    • 0027640858 scopus 로고
    • Learning in the presence of malicious errors
    • August
    • Michael Kearns and Ming Li. Learning in the presence of malicious errors. SIAM Journal on Computing, 22(4):807-837, August 1993.
    • (1993) SIAM Journal on Computing , vol.22 , Issue.4 , pp. 807-837
    • Kearns, M.1    Li, M.2
  • 34
    • 0000511449 scopus 로고
    • Redundant noisy attributes, attribute errors, and lineary-threshold learning using winnow
    • Nicholas Littlestone. Redundant noisy attributes, attribute errors, and lineary-threshold learning using winnow. In Fourth Workshop on Computational Learning Theory, pages 147-156, 1991.
    • (1991) Fourth Workshop on Computational Learning Theory , pp. 147-156
    • Littlestone, N.1
  • 36
    • 0000531852 scopus 로고
    • Generalization as search
    • Thomas Mitchell. Generalization as Search. Artificial Intelligence, 18:203-226, 1982.
    • (1982) Artificial Intelligence , vol.18 , pp. 203-226
    • Mitchell, T.1
  • 38
    • 85031120217 scopus 로고    scopus 로고
    • On learning from queries and counterexamples in the presence of noise
    • To appear
    • Yasubumi Sakakibara. On learning from queries and counterexamples in the presence of noise. Information Processing Letters. To appear.
    • Information Processing Letters
    • Sakakibara, Y.1
  • 41
    • 0021518106 scopus 로고
    • A theory of the learnable
    • November
    • Leslie Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142, November 1984.
    • (1984) Communications of the ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.