메뉴 건너뛰기




Volumn , Issue , 2009, Pages

Neural network model improvements for identification of contaminant source position inside of buildings

Author keywords

Contaminant source position; Multi zone modeling; Neural networks; Validation

Indexed keywords

BACKGROUND CONCENTRATION; CONTAMINANT CONCENTRATIONS; CONTAMINANT DISTRIBUTIONS; CONTAMINANT SOURCES; DISCRETE VALUES; MULTIPLE INPUTS; NEURAL NETWORK MODEL; NON-LINEAR TRANSFORMATIONS; OUTPUT DOMAIN; POLLUTANT CONCENTRATION; POLLUTANT SPECIES; SOURCE POSITION; SOURCE STRENGTH; VALIDATION;

EID: 84872648175     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1)

References (2)
  • 1
    • 45749127106 scopus 로고    scopus 로고
    • Application of Neural Networks Trained with Multi-Zone Models for Fast and Accurate Detection of Contaminant Source Position in Buildings
    • Vukovic V., and Srebric J. 2007. Application of Neural Networks Trained with Multi-Zone Models for Fast and Accurate Detection of Contaminant Source Position in Buildings. ASHRAE Transactions, 113(2), 154-162.
    • (2007) ASHRAE Transactions , vol.113 , Issue.2 , pp. 154-162
    • Vukovic, V.1    Srebric, J.2
  • 2
    • 0029215096 scopus 로고
    • Simulation and Measurement of Air Infiltration and Pollutant Transport Using a Passive Solar Test House
    • Yoshino H., Yun Z., Kobayashi H., and Utsumi Y. 1995. Simulation and Measurement of Air Infiltration and Pollutant Transport Using a Passive Solar Test House. ASHRAE Transactions, 101(1), 1091-1099.
    • (1995) ASHRAE Transactions , vol.101 , Issue.1 , pp. 1091-1099
    • Yoshino, H.1    Yun, Z.2    Kobayashi, H.3    Utsumi, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.