-
1
-
-
41449118528
-
Selection from a stable box
-
MR2401656
-
AUE, A., BERKES, I. and HORVÁTH, L. (2008). Selection from a stable box. Bernoulli 14 125-139. MR2401656
-
(2008)
Bernoulli
, vol.14
, pp. 125-139
-
-
Aue, A.1
Berkes, I.2
Horváth, L.3
-
2
-
-
0001643692
-
Weak convergence of sums of moving averages in the α-stable domain of attraction
-
MR1143432
-
AVRAM, F. and TAQQU, M. S. (1992). Weak convergence of sums of moving averages in the α-stable domain of attraction. Ann. Probab. 20 483-503. MR1143432
-
(1992)
Ann. Probab.
, vol.20
, pp. 483-503
-
-
Avram, F.1
Taqqu, M.S.2
-
3
-
-
80051665323
-
Stable limits for sums of dependent infinite ariance random variables
-
BARTKIEWICZ, K., JAKUBOWSKI, A., MIKOSCH, T. andWINTENBERGER, O. (2011). Stable limits for sums of dependent infinite ariance random variables. Probab. Theory Related Fields 150 337-372.
-
(2011)
Probab. Theory Related Fields
, vol.150
, pp. 337-372
-
-
Bartkiewicz, K.1
Jakubowski, A.2
Mikosch, T.3
Wintenberger, O.4
-
5
-
-
61849184868
-
Regularly varying multivariate time series
-
MR2508565
-
BASRAK, B. and SEGERS, J. (2009). Regularly varying multivariate time series. Stochastic Process. Appl. 119 1055-1080. MR2508565
-
(2009)
Stochastic Process. Appl.
, vol.11
-
-
Basrak, B.1
Segers, J.2
-
6
-
-
4043059348
-
Lévy Processes
-
Cambridge Univ. Press, Cambridge. MR1406564
-
BERTOIN, J. (1996). Lévy Processes. Cambridge Tracts in Math. 121. Cambridge Univ. Press, Cambridge. MR1406564
-
(1996)
Cambridge Tracts in Math
, vol.121
-
-
Bertoin, J.1
-
7
-
-
0003407041
-
Convergence of Probability Measures
-
New York.
-
BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.MR0233396
-
(1968)
Wiley
-
-
Billingsley, P.1
-
8
-
-
0007192502
-
Time Series: Theory and Methods, 2nd ed
-
New York. MR1093459
-
BROCKWELL, P. J. and DAVIS, R. A. (1991). Time Series: Theory and Methods, 2nd ed.Springer, New York. MR1093459
-
(1991)
Springer
-
-
Brockwell, P.J.1
Davis, R.A.2
-
9
-
-
0001830785
-
Stable limits for associated random variables
-
MR1258863
-
DABROWSKI, A. R. and JAKUBOWSKI, A. (1994). Stable limits for associated random variables.Ann. Probab. 22 1-16. MR1258863
-
(1994)
Ann. Probab.
, vol.22
, pp. 1-16
-
-
Dabrowski, A.R.1
Jakubowski, A.2
-
10
-
-
0001568756
-
Limit theory for moving averages of random variables with regularly varying tail probabilities
-
MR0770636
-
DAVIS, R. and RESNICK, S. (1985). Limit theory for moving averages of random variables with regularly varying tail probabilities. Ann. Probab. 13 179-195. MR0770636
-
(1985)
Ann. Probab.
, vol.13
, pp. 179-195
-
-
Davis, R.1
Resnick, S.2
-
11
-
-
0011020531
-
Stable limits for partial sums of dependent random variables
-
MR0690127
-
DAVIS, R. A. (1983). Stable limits for partial sums of dependent random variables. Ann.Probab. 11 262-269. MR0690127
-
(1983)
Ann.Probab.
, vol.11
, pp. 262-269
-
-
Davis, R.A.1
-
12
-
-
0001094957
-
Point process and partial sum convergence for weakly dependent random variables with infinite variance
-
MR1334176
-
DAVIS, R. A. and HSING, T. (1995). Point process and partial sum convergence for weakly dependent random variables with infinite variance. Ann. Probab. 23 879-917. MR1334176
-
(1995)
Ann. Probab.
, vol.23
, pp. 879-917
-
-
Davis, R.A.1
Mikosch, T.2
-
13
-
-
0032264526
-
The sample autocorrelations of heavy-tailed processes with applications to ARCH
-
MR1673289
-
DAVIS, R. A. and MIKOSCH, T. (1998). The sample autocorrelations of heavy-tailed processes with applications to ARCH. Ann. Statist. 26 2049-2080. MR1673289
-
(1998)
Ann. Statist.
, vol.26
, pp. 2049-2080
-
-
Davis, R.A.1
Mikosch, T.2
-
14
-
-
77649229701
-
The extremogram: A correlogram for extreme events
-
MR2597580
-
DAVIS, R. A. and MIKOSCH, T. (2009). The extremogram: A correlogram for extreme events. Bernoulli 15 977-1009. MR2597580
-
(2009)
Bernoulli
, vol.15
, pp. 977-1009
-
-
Davis, R.A.1
Mikosch, T.2
-
15
-
-
80051673266
-
Probabilistic properties of stochastic volatility models
-
Springer
-
DAVIS, R. A. andMIKOSCH, T. (2009). Probabilistic properties of stochastic volatility models. In Handbook of Financial Time Series (T. G. Anderson, R. A. Davis, J. P. Kreiss and T. Mikosch, eds.) 255-268. Springer.
-
(2009)
In Handbook of Financial Time Series (T. G. Anderson, R. A. Davis, J. P. Kreiss and T. Mikosch, eds.)
, pp. 255-268
-
-
Davis, R.A.1
Mikosch, T.2
-
16
-
-
38249005646
-
Stable limit distributions for strongly mixing sequences
-
MR1040810
-
DENKER, M. and JAKUBOWSKI, A. (1989). Stable limit distributions for strongly mixing sequences. Statist. Probab. Lett. 8 477-483. MR1040810
-
(1989)
Statist. Probab. Lett.
, vol.8
, pp. 477-483
-
-
Denker, M.1
Jakubowski, A.2
-
17
-
-
0000918549
-
Functional limit theorems for dependent variables
-
MR0503954
-
DURRETT, R. and RESNICK, S. I. (1978). Functional limit theorems for dependent variables. Ann. Probab. 6 829-846. MR0503954
-
(1978)
Ann. Probab.
, vol.6
, pp. 829-846
-
-
Durrett, R.1
Resnick, S.I.2
-
18
-
-
0042808668
-
Modelling Extremal Events: For Insurance and Finance
-
Springer, Berlin. MR1458613
-
EMBRECHTS, P., KLÜPPELBERG, C. and MIKOSCH, T. (1997). Modelling Extremal Events: For Insurance and Finance. Applications of Mathematics (New York) 33. Springer, Berlin. MR1458613
-
(1997)
Applications of Mathematics (New York)
, vol.33
-
-
Embrechts, P.1
Klüppelberg, C.2
Mikosch, T.3
-
19
-
-
0003421261
-
An Introduction to Probability Theory and Its Applications
-
Wiley, New York. MR0270403
-
FELLER, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II, 2nd ed. Wiley, New York. MR0270403
-
(1971)
Vol. II, 2nd ed.
-
-
Feller, W.1
-
20
-
-
0003513648
-
Limit Distributions for Sums of Independent Random Variables
-
Cambridge, MA. MR0062975
-
GNEDENKO, B. V. and KOLMOGOROV, A. N. (1954). Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, Cambridge, MA. MR0062975
-
(1954)
Addison-Wesley
-
-
Gnedenko, B.V.1
Kolmogorov, A.N.2
-
21
-
-
0000732230
-
Implicit renewal theory and tails of solutions of random equations
-
MR1097468
-
GOLDIE, C. M. (1991). Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1 126-166. MR1097468
-
(1991)
Ann. Appl. Probab.
, vol.1
, pp. 126-166
-
-
Goldie, C.M.1
-
22
-
-
10744227440
-
Central limit theorem and stable laws for intermittent maps
-
MR2027296
-
GOUËZEL, S. (2004). Central limit theorem and stable laws for intermittent maps. Probab. Theory Related Fields 128 82-122. MR2027296
-
(2004)
Probab. Theory Related Fields
, vol.128
, pp. 82-122
-
-
Gouëzel, S.1
-
23
-
-
0002158552
-
A functional central limit theorem for strongly mixing sequences of random variables
-
MR0791910
-
HERRNDORF, N. (1985). A functional central limit theorem for strongly mixing sequences of random variables. Z. Wahrsch. Verw. Gebiete 69 541-550. MR0791910
-
(1985)
Z. Wahrsch. Verw. Gebiete
, vol.69
, pp. 541-550
-
-
Herrndorf, N.1
-
24
-
-
38249005991
-
Minimal conditions in p-stable limit theorems
-
MR1200412
-
JAKUBOWSKI, A. (1993). Minimal conditions in p-stable limit theorems. Stochastic Process. Appl. 44 291-327. MR1200412
-
(1993)
Stochastic Process. Appl.
, vol.44
, pp. 291-327
-
-
Jakubowski, A.1
-
25
-
-
0031591380
-
Minimal conditions in p-stable limit theorems
-
MR1454576
-
JAKUBOWSKI, A. (1997). Minimal conditions in p-stable limit theorems. II. Stochastic Process. Appl. 68 1-20. MR1454576
-
(1997)
II. Stochastic Process. Appl.
, vol.68
, pp. 1-20
-
-
Jakubowski, A.1
-
26
-
-
0010985291
-
A-stable limit theorems for sums of dependent random vectors
-
MR1004336
-
JAKUBOWSKI, A. and KOBUS, M. (1989). a-stable limit theorems for sums of dependent random vectors. J. Multivariate Anal. 29 219-251. MR1004336
-
(1989)
J. Multivariate Anal.
, vol.29
, pp. 219-251
-
-
Jakubowski, A.1
Kobus, M.2
-
27
-
-
85043048186
-
Random Measures, 3rd ed
-
Berlin. MR0818219
-
KALLENBERG, O. (1983). Random Measures, 3rd ed. Akademie-Verlag, Berlin. MR0818219
-
(1983)
Akademie-Verlag
-
-
Kallenberg, O.1
-
28
-
-
0004201402
-
Foundations of Modern Probability
-
New York. MR1464694
-
KALLENBERG, O. (1997). Foundations of Modern Probability. Springer, New York. MR1464694
-
(1997)
Springer
-
-
Kallenberg, O.1
-
29
-
-
0000803498
-
On strong mixing conditions for stationary Gaussian process
-
KOLMOGOROV, A. N. and ROZANOV, Y. A. (1960). On strong mixing conditions for stationary Gaussian process. Theory Probab. Appl. 5 204-208.
-
(1960)
Theory Probab. Appl.
, vol.5
, pp. 204-208
-
-
Kolmogorov, A.N.1
Rozanov, Y.A.2
-
30
-
-
84872520152
-
Functional limit theorems for weakly dependent regularly varying time series
-
Available at
-
KRIZMANÍC, D. (2010). Functional limit theorems for weakly dependent regularly varying time series. Ph.D. thesis, Univ. Zagreb. Available at http://www.math.uniri.hr/dkrizmanic/DKthesis.pdf.
-
(2010)
Ph.D. thesis, Univ. Zagreb
-
-
Krizmaníc, D.1
-
31
-
-
0001433650
-
Extremal theory for stochastic processes
-
MR0929071
-
LEADBETTER, M. R. and ROOTZÉN, H. (1988). Extremal theory for stochastic processes. Ann. Probab. 16 431-478. MR0929071
-
(1988)
Ann. Probab.
, vol.16
, pp. 431-478
-
-
Leadbetter, M.R.1
Rootzén, H.2
-
32
-
-
0000994389
-
Convergence to a stable distribution via order statistics
-
MR0624688
-
LEPAGE, R., WOODROOFE, M. and ZINN, J. (1981). Convergence to a stable distribution via order statistics. Ann. Probab. 9 624-632. MR0624688
-
(1981)
Ann. Probab.
, vol.9
, pp. 624-632
-
-
Lepage, R.1
Woodroofe, M.2
Zinn, J.3
-
34
-
-
0034214586
-
The functional central limit theorem under the strong mixing condition
-
MR1797876
-
MERLEVÉDE, F. and PELIGRAD, M. (2000). The functional central limit theorem under the strong mixing condition. Ann. Probab. 28 1336-1352. MR1797876
-
(2000)
Ann. Probab.
, vol.28
, pp. 1336-1352
-
-
Merlevéde, F.1
Peligrad, M.2
-
35
-
-
0034287159
-
Limit theory for the sample autocorrelations and extremes of a GARCH (1, 1) process
-
MR1805791
-
MIKOSCH, T. and STǎRICǎ, C. (2000). Limit theory for the sample autocorrelations and extremes of a GARCH (1, 1) process. Ann. Statist. 28 1427-1451. MR1805791
-
(2000)
Ann. Statist.
, vol.28
, pp. 1427-1451
-
-
Mikosch, T.1
Stǎricǎ, C.2
-
36
-
-
0002047692
-
Limit distributions of two-dimensional point processes generated by strongmixing sequences
-
MR0467887
-
MORI, T. (1977). Limit distributions of two-dimensional point processes generated by strongmixing sequences. Yokohama Math. J. 25 155-168. MR0467887
-
(1977)
Yokohama Math. J.
, vol.25
, pp. 155-168
-
-
Mori, T.1
-
37
-
-
17044387009
-
A new maximal inequality and invariance principle for stationary sequences
-
MR2123210
-
PELIGRAD, M. and UTEV, S. (2005). A new maximal inequality and invariance principle for stationary sequences. Ann. Probab. 33 798-815. MR2123210
-
(2005)
Ann. Probab.
, vol.33
, pp. 798-815
-
-
Peligrad, M.1
Utev, S.2
-
38
-
-
0039893700
-
Limit Theorems of Probability Theory: Sequences of Independent Random Variables
-
Clarendon, Oxford Univ. Press, New York. MR1353441
-
PETROV, V. V. (1995). Limit Theorems of Probability Theory: Sequences of Independent Random Variables. Oxford Studies in Probability 4. Clarendon, Oxford Univ. Press, New York. MR1353441
-
(1995)
Oxford Studies in Probability
, vol.4
-
-
Petrov, V.V.1
-
39
-
-
0001155464
-
Some mixing properties of time series models
-
MR0787587
-
PHAM, T. D. and TRAN, L. T. (1985). Some mixing properties of time series models. Stochastic Process. Appl. 19 297-303. MR0787587
-
(1985)
Stochastic Process. Appl.
, vol.19
, pp. 297-303
-
-
Pham, T.D.1
Tran, L.T.2
-
40
-
-
0002095272
-
Point processes, regular variation and weak convergence
-
MR0827332
-
RESNICK, S. I. (1986). Point processes, regular variation and weak convergence. Adv. in Appl. Probab. 18 66-138. MR0827332
-
(1986)
Adv. in Appl. Probab.
, vol.18
, pp. 66-138
-
-
Resnick, S.I.1
-
41
-
-
85046584195
-
Heavy-Tail Phenomena: Probabilistic and Statistical Modeling
-
New York. MR2271424
-
RESNICK, S. I. (2007). Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer, New York. MR2271424
-
(2007)
Springer
-
-
Resnick, S.I.1
-
42
-
-
0003232762
-
Lévy Processes and Infinitely Divisible Distributions
-
Cambridge Univ. Press, Cambridge. MR1739520
-
SATO, K.-I. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Stud. Adv. Math. 68. Cambridge Univ. Press, Cambridge. MR1739520
-
(1999)
Cambridge Stud. Adv. Math.
, vol.68
-
-
Sato, K.-I.1
-
43
-
-
0344082898
-
Functionals of clusters of extremes
-
MR2014268
-
SEGERS, J. (2003). Functionals of clusters of extremes. Adv. in Appl. Probab. 35 1028-1045. MR2014268
-
(2003)
Adv. in Appl. Probab.
, vol.35
, pp. 1028-1045
-
-
Segers, J.1
-
44
-
-
25144469282
-
Approximate distributions of clusters of extremes
-
MR2186477
-
SEGERS, J. (2005). Approximate distributions of clusters of extremes. Statist. Probab. Lett. 74 330-336. MR2186477
-
(2005)
Statist. Probab. Lett.
, vol.74
, pp. 330-336
-
-
Segers, J.1
-
45
-
-
0000683243
-
Limit theorems for stochastic processes with independent increments
-
MR0094842
-
SKOROHOD, A. V. (1957). Limit theorems for stochastic processes with independent increments. Theory Probab. Appl. 2 145-177. MR0094842
-
(1957)
Theory Probab. Appl.
, vol.2
, pp. 145-177
-
-
Skorohod, A.V.1
-
46
-
-
51949093459
-
Nonstandard limit theorem for infinite variance functionals
-
MR2393998
-
SLY, A. and HEYDE, C. (2008). Nonstandard limit theorem for infinite variance functionals. Ann. Probab. 36 796-805. MR2393998
-
(2008)
Ann. Probab.
, vol.36
, pp. 796-805
-
-
Szl, A.1
Heyde, C.2
-
47
-
-
0001782542
-
The extremal index for a Markov chain
-
MR1147765
-
SMITH, R. L. (1992). The extremal index for a Markov chain. J. Appl. Probab. 29 37-45. MR1147765
-
(1992)
J. Appl. Probab
, vol.29
, pp. 37-45
-
-
Smith, R.L.1
-
48
-
-
77955418389
-
Convergence to Lévy stable processes under some weak dependence conditions
-
MR2673968
-
TYRAN-KAMIŃ SKA, M. (2010). Convergence to Lévy stable processes under some weak dependence conditions. Stochastic Process. Appl. 120 1629-1650. MR2673968
-
(2010)
Stochastic Process. Appl.
, vol.120
, pp. 1629-1650
-
-
Tyran-Kamińska, M.1
-
49
-
-
77952239320
-
Functional limit theorems for linear processes in the domain of attraction of stable laws
-
MR2638967
-
TYRAN-KAMIŃ SKA, M. (2010). Functional limit theorems for linear processes in the domain of attraction of stable laws. Statist. Probab. Lett. 80 975-981. MR2638967
-
(2010)
Statist. Probab. Lett.
, vol.80
, pp. 975-981
-
-
Tyran-Kamińska, M.1
|