-
1
-
-
84862977236
-
A continuum-tree-valued Markov process
-
ABRAHAM, R. and DELMAS, J. F. (2008). A continuum-tree-valued Markov process. Ann. Probab. 40 1167-1211.
-
(2008)
Ann. Probab.
, vol.40
, pp. 1167-1211
-
-
Abraham, R.1
Delmas, J.F.2
-
2
-
-
61849179718
-
Williams' decomposition of the Lévy continuum random tree and simultaneous extinction probability for populations with neutral mutations
-
MR2508567
-
ABRAHAM, R. and DELMAS, J.-F. (2009). Williams' decomposition of the Lévy continuum random tree and simultaneous extinction probability for populations with neutral mutations. Stochastic Process. Appl. 119 1124-1143. MR2508567
-
(2009)
Stochastic Process. Appl.
, vol.119
, pp. 1124-1143
-
-
Abraham, R.1
Delmas, J.-F.2
-
3
-
-
0001812090
-
The continuum random tree. II. An overview. In Stochastic Analysis (Durham, 1990)
-
Cambridge Univ. Press, Cambridge. MR1166406
-
ALDOUS, D. (1991). The continuum random tree. II. An overview. In Stochastic Analysis (Durham, 1990). London Mathematical Society Lecture Note Series 167 23-70. Cambridge Univ. Press, Cambridge. MR1166406
-
(1991)
London Mathematical Society Lecture Note Series
, vol.167
, pp. 23-70
-
-
Aldous, D.1
-
4
-
-
0003296611
-
The continuum random tree
-
MR1207226
-
ALDOUS, D. (1993). The continuum random tree. III. Ann. Probab. 21 248-289. MR1207226
-
(1993)
III. Ann. Probab.
, vol.21
, pp. 248-289
-
-
Aldous, D.1
-
6
-
-
77953681050
-
The-coalescent speed of coming down from infinity
-
MR2599198
-
BERESTYCKI, J., BERESTYCKI, N. and LIMIC, V. (2010). The-oalescent speed of coming down from infinity. Ann. Probab. 38 207-233. MR2599198
-
(2010)
Ann. Probab.
, vol.38
, pp. 207-233
-
-
Berestycki, J.1
Berestycki, N.2
Limic, V.3
-
8
-
-
4043059348
-
Lévy Processes
-
Camridge Univ. Press, Cambridge. MR1406564
-
BERTOIN, J. (1996). Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge Univ. Press, Cambridge. MR1406564
-
(1996)
Cambridge Tracts in Mathematics
, vol.121
-
-
Bertoin, J.1
-
9
-
-
0038648299
-
Stochastic flows associated to coalescent processes
-
MR1990057
-
BERTOIN, J. and LE GALL, J.-F. (2003). Stochastic flows associated to coalescent processes. Probab. Theory Related Fields 126 261-288. MR1990057
-
(2003)
Probab. Theory Related Fields
, vol.126
, pp. 261-288
-
-
Bertoin, J.1
Gall, L.E.J.-F.2
-
10
-
-
17544361827
-
Stochastic flows associated to coalescent processes. II. Stochastic differential equations
-
MR2139022
-
BERTOIN, J. and LE GALL, J.-F. (2005). Stochastic flows associated to coalescent processes. II. Stochastic differential equations. Ann. Inst. Henri Poincaré Probab. Stat. 41 307-333. MR2139022
-
(2005)
Ann. Inst. Henri Poincaré Probab. Stat.
, vol.41
, pp. 307-333
-
-
Bertoin, J.1
Le Gall, J.-F.2
-
11
-
-
33846297375
-
Stochastic flows associated to coalescent processes. III. Limit theorems
-
(electronic). MR2247827
-
BERTOIN, J. and LE GALL, J.-F. (2006). Stochastic flows associated to coalescent processes. III. Limit theorems. Illinois J. Math. 50 147-181 (electronic). MR2247827
-
(2006)
Illinois J. Math.
, vol.50
, pp. 147-181
-
-
Bertoin, J.1
Le Gall, J.-F.2
-
12
-
-
15944407665
-
Alpha-stable branching and beta-coalescents. Electron
-
(electronic). MR2120246
-
BIRKNER, M., BLATH, J., CAPALDO, M., ETHERIDGE, A., MÖHLE, M., SCHWEINSBERG, J. andWAKOLBINGER, A. (2005). Alpha-stable branching and beta-coalescents. Electron. J. Probab. 10 303-325 (electronic). MR2120246
-
(2005)
J. Probab.
, vol.10
, pp. 303-325
-
-
Birkner, M.1
Blath, J.2
Capaldo, M.3
Etheridge, A.4
Möhle, M.5
Schweinsberg, J.6
Wakolbinger, A.7
-
15
-
-
0033243134
-
Particle representations for measure-valued population models
-
MR1681126
-
DONNELLY, P. and KURTZ, T. G. (1999). Particle representations for measure-valued population models. Ann. Probab. 27 166-205. MR1681126
-
(1999)
Ann. Probab.
, vol.27
, pp. 166-205
-
-
Donnelly, P.1
Kurtz, T.G.2
-
16
-
-
33947725198
-
Random Trees, Lévy Processes and Spatial Branching Processes
-
MR1954248
-
DUQUESNE, T. and LE GALL, J.-F. (2002). Random Trees, Lévy Processes and Spatial Branching Processes. Astérisque 281. MR1954248
-
(2002)
Astérisque
, vol.281
-
-
Duquesne, T.1
Le Gall, J.-F.2
-
17
-
-
15544389808
-
Probabilistic and fractal aspects of Lévy trees
-
MR2147221
-
DUQUESNE, T. and LE GALL, J.-F. (2005). Probabilistic and fractal aspects of Lévy trees. Probab. Theory Related Fields 131 553-603. MR2147221
-
(2005)
Probab. Theory Related Fields
, vol.131
, pp. 553-603
-
-
Duquesne, T.1
Le Gall, J.-F.2
-
19
-
-
0141888171
-
A decomposition of the (1 + β)- superprocess conditioned on survival
-
MR2006204
-
ETHERIDGE, A. M. and WILLIAMS, D. R. E. (2003). A decomposition of the (1 + β)- superprocess conditioned on survival. Proc. Roy. Soc. Edinburgh Sect. A 133 829-847. MR2006204
-
(2003)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.133
, pp. 829-847
-
-
Etheridge, A.M.1
Williams, D.R.E.2
-
20
-
-
84971790772
-
Two representations of a conditioned superprocess
-
MR1249698
-
EVANS, S. N. (1993). Two representations of a conditioned superprocess. Proc. Roy. Soc. Edinburgh Sect. A 123 959-971. MR1249698
-
(1993)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.123
, pp. 959-971
-
-
Evans, S.N.1
-
21
-
-
51249174086
-
Measure-valued Markov branching processes conditioned on nonextinction
-
MR1088825
-
EVANS, S. N. and PERKINS, E. (1990). Measure-valued Markov branching processes conditioned on nonextinction. Israel J. Math. 71 329-337. MR1088825
-
(1990)
Israel J. Math.
, vol.71
, pp. 329-337
-
-
Evans, S.N.1
Perkins, E.2
-
22
-
-
76449094191
-
Dynamics of the time to the most recent common ancestor in a large branching population
-
MR2582640
-
EVANS, S. N. and RALPH, P. L. (2010). Dynamics of the time to the most recent common ancestor in a large branching population. Ann. Appl. Probab. 20 1-25. MR2582640
-
(2010)
Ann. Appl. Probab.
, vol.20
, pp. 1-25
-
-
Evans, S.N.1
Ralph, P.L.2
-
24
-
-
0001625339
-
Some measure-valued Markov processes in population genetics theory
-
MR0542340
-
FLEMING, W. H. andVIOT, M. (1979). Some measure-valued Markov processes in population genetics theory. Indiana Univ. Math. J. 28 817-843. MR0542340
-
(1979)
Indiana Univ. Math. J.
, vol.28
, pp. 817-843
-
-
Fleming, W.H.1
Viot, M.2
-
25
-
-
0001215246
-
On the probability of the extinction of families
-
GALTON, F. and WATSON, H. W. (1874). On the probability of the extinction of families. J. Roy. Anthropol. Inst. 4 138-144.
-
(1874)
J. Roy. Anthropol. Inst.
, vol.4
, pp. 138-144
-
-
Galton, F.1
Watson, H.W.2
-
26
-
-
0010191693
-
Asymptotic behaviour of continuous time, continuous state-space branching processes
-
MR0408016
-
GREY, D. R. (1974). Asymptotic behaviour of continuous time, continuous state-space branching processes. J. Appl. Probab. 11 669-677. MR0408016
-
(1974)
J. Appl. Probab.
, vol.11
, pp. 669-677
-
-
Grey, D.R.1
-
27
-
-
3242780104
-
Convergence to the coalescent in populations of substantially varying size
-
MR2052578
-
JAGERS, P. and SAGITOV, S. (2004). Convergence to the coalescent in populations of substantially varying size. J. Appl. Probab. 41 368-378. MR2052578
-
(2004)
J. Appl. Probab.
, vol.41
, pp. 368-378
-
-
Jagers, P.1
Sagitov, S.2
-
28
-
-
0010174296
-
Stochastic branching processes with continuous state space
-
MR0101554
-
JIRINA, M. (1958). Stochastic branching processes with continuous state space. Czechoslovak Math. J. 83 292-313. MR0101554
-
(1958)
Czechoslovak Math. J.
, vol.83
, pp. 292-313
-
-
Jirina, M.1
-
29
-
-
0037573260
-
The coalescent process in a population with stochastically varying size
-
MR1953766
-
KAJ, I. and KRONE, S. M. (2003). The coalescent process in a population with stochastically varying size. J. Appl. Probab. 40 33-48. MR1953766
-
(2003)
J. Appl. Probab.
, vol.40
, pp. 33-48
-
-
Kaj, I.1
Krone, S.M.2
-
30
-
-
0001782184
-
Branching processes with immigration and related limit theorems
-
MR0290475
-
KAWAZU, K. andWATANABE, S. (1971). Branching processes with immigration and related limit theorems. Teor. Verojatnost. i Primenen. 16 34-51. MR0290475
-
(1971)
Teor. Verojatnost. i Primenen.
, vol.16
, pp. 34-51
-
-
Kawazu, K.1
Watanabe, S.2
-
32
-
-
0344944937
-
Coalescence times for the branching process
-
MR2014270
-
LAMBERT, A. (2003). Coalescence times for the branching process. Adv. in Appl. Probab. 35 1071-1089. MR2014270
-
(2003)
Adv. in Appl. Probab.
, vol.35
, pp. 1071-1089
-
-
Lambert, A.1
-
33
-
-
34147104061
-
Quasi-stationary distributions and the continuous-state branching process conditioned to be never extinct
-
MR2299923
-
LAMBERT, A. (2007). Quasi-stationary distributions and the continuous-state branching process conditioned to be never extinct. Electron. J. Probab. 12 420-446. MR2299923
-
(2007)
Electron. J. Probab.
, vol.12
, pp. 420-446
-
-
Lambert, A.1
-
35
-
-
0041179393
-
Branching processes in Lévy processes: Laplace functionals of snakes and superprocesses
-
MR1675019
-
LE GALL, J.-F. and LE JAN, Y. (1998). Branching processes in Lévy processes: Laplace functionals of snakes and superprocesses. Ann. Probab. 26 1407-1432. MR1675019
-
(1998)
Ann. Probab.
, vol.26
, pp. 1407-1432
-
-
Le Gall, J.-F.1
Le Jan, Y.2
-
36
-
-
0032348696
-
Branching processes in Lévy processes: The exploration process
-
MR1617047
-
LE GALL, J.-F. and LE JAN, Y. (1998). Branching processes in Lévy processes: The exploration process. Ann. Probab. 26 213-252. MR1617047
-
(1998)
Ann. Probab.
, vol.26
, pp. 213-252
-
-
Le Gall, J.-F.1
Le Jan, Y.2
-
38
-
-
0007237457
-
Asymptotic behaviour of continuous time and state branching processes
-
MR1727226
-
LI, Z.-H. (2000). Asymptotic behaviour of continuous time and state branching processes. Austral. Math. Soc. Lect. Ser. 68 68-84. MR1727226
-
(2000)
Austral. Math. Soc. Lect. Ser.
, vol.68
, pp. 68-84
-
-
Li, Z.-H.1
-
39
-
-
77952789104
-
On the speed of coming down from infinity for E-coalescent processes
-
MR2594877
-
LIMIC, V. (2010). On the speed of coming down from infinity for E-coalescent processes. Electron. J. Probab. 15 217-240. MR2594877
-
(2010)
Electron. J. Probab.
, vol.15
, pp. 217-240
-
-
Limic, V.1
-
40
-
-
0036142652
-
The coalescent in population models with time-inhomogeneous environment
-
MR1875333
-
MÖHLE, M. (2002). The coalescent in population models with time-inhomogeneous environment. Stochastic Process. Appl. 97 199-227. MR1875333
-
(2002)
Stochastic Process. Appl.
, vol.97
, pp. 199-227
-
-
Möhle, M.1
-
42
-
-
33645909147
-
A note on moment generating functions
-
MR2270543
-
MUKHERJEA, A., RAO, M. and SUEN, S. (2006). A note on moment generating functions. Statist. Probab. Lett. 76 1185-1189. MR2270543
-
(2006)
Statist. Probab. Lett.
, vol.76
, pp. 1185-1189
-
-
Mukherjea, A.1
Rao, M.2
Suen, S.3
-
43
-
-
0009301431
-
Conditional Dawson-Watanabe processes and Fleming-Viot processes
-
Birkhäuser, Boston, MA. MR1172149
-
PERKINS, E. A. (1992). Conditional Dawson-Watanabe processes and Fleming-Viot processes. In Seminar on Stochastic Processes, 1991 (Los Angeles, CA, 1991). Progress in Probability 29 143-156. Birkhäuser, Boston, MA. MR1172149
-
(1992)
In Seminar on Stochastic Processes, 1991 (Los Angeles, CA, 1991). Progress in Probability
, vol.29
, pp. 143-156
-
-
Perkins, E.A.1
-
44
-
-
84966232313
-
Limit theorems for continuous state branching processes with immigration
-
MR0295450
-
PINSKY, M. A. (1972). Limit theorems for continuous state branching processes with immigration. Bull. Amer. Math. Soc. (N.S.) 78 242-244. MR0295450
-
(1972)
Bull. Amer. Math. Soc. (N.S.)
, vol.78
, pp. 242-244
-
-
Pinsky, M.A.1
-
45
-
-
0033233681
-
Coalescents with multiple collisions
-
MR1742892
-
PITMAN, J. (1999). Coalescents with multiple collisions. Ann. Probab. 27 1870-1902. MR1742892
-
(1999)
Ann. Probab.
, vol.27
, pp. 1870-1902
-
-
Pitman, J.1
-
47
-
-
0040100097
-
Processus de Dawson-Watanabe conditionné par le futur lointain
-
MR1055211
-
ROELLY-COPPOLETTA, S. and ROUAULT, A. (1989). Processus de Dawson-Watanabe conditionné par le futur lointain. C. R. Acad. Sci. Paris Sér. I Math. 309 867-872. MR1055211
-
(1989)
C. R. Acad. Sci. Paris Sér. I Math.
, vol.309
, pp. 867-872
-
-
Roelly-Coppoletta, S.1
Rouault, A.2
-
48
-
-
0033233843
-
The general coalescent with asynchronous mergers of ancestral lines
-
MR1742154
-
SAGITOV, S. (1999). The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab. 36 1116-1125. MR1742154
-
(1999)
J. Appl. Probab.
, vol.36
, pp. 1116-1125
-
-
Sagitov, S.1
-
49
-
-
0001771498
-
Evolution in Mendelian populations
-
WRIGHT, S. (1931). Evolution in Mendelian populations. Genetics 16 97-159.
-
(1931)
Genetics
, vol.16
, pp. 97-159
-
-
Wright, S.1
|