-
2
-
-
0001119849
-
Diffusions hypercontractives
-
Springer, Berlin
-
BAKRY, D. and ÉMERY, M. (1985). Diffusions hypercontractives. In Séminaire de Probabilités, XIX, 1983/84. Lecture Notes in Math. 1123 177-206. Springer, Berlin. MR0889476
-
(1985)
Séminaire de Probabilités, XIX, 1983/84. Lecture Notes in Math.
, vol.1123
, pp. 177-206
-
-
Bakry, D.1
Émery, M.2
-
7
-
-
0004217806
-
Probabilités et potentiel
-
Chapitres XVII à XXIV: Processus de Markov (fin), Compléments de calcul stochastique. Herman, Paris
-
DELLACHERIE, C., MAISONNEUVE, B. andMEYER, P.-A. (1992). Probabilités et potentiel. Chapitres XVII à XXIV: Processus de Markov (fin), Compléments de calcul stochastique. Herman, Paris.
-
(1992)
-
-
Dellacherie, C.1
Maisonneuve, B.2
Meyer, P.-A.3
-
8
-
-
0003228611
-
Dirichlet Forms and Symmetric Markov Processes
-
de Gruyter, Berlin
-
FUKUSHIMA, M., OSHIMA, Y. and TAKEDA, M. (1994). Dirichlet Forms and Symmetric Markov Processes. de Gruyter Studies in Mathematics 19. de Gruyter, Berlin. MR1303354
-
(1994)
de Gruyter Studies in Mathematics
, vol.19
-
-
Fukushima, M.1
Oshima, Y.2
Takeda, M.3
-
9
-
-
0004265476
-
-
2nd ed. Springer, Berlin.
-
GALLOT, S., HULIN, D. and LAFONTAINE, J. (1990). Riemannian Geometry, 2nd ed. Springer, Berlin. MR1083149
-
(1990)
Riemannian Geometry
-
-
Gallot, S.1
Hulin, D.2
Lafontaine, J.3
-
10
-
-
0001645277
-
Gaussian Hilbert Spaces
-
Cambridge Univ. Press, Cambridge
-
JANSON, S. (1997). Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics 129. Cambridge Univ. Press, Cambridge. MR1474726
-
(1997)
Cambridge Tracts in Mathematics
, vol.129
-
-
Janson, S.1
-
11
-
-
0001156542
-
L'algèbre de Lie des gradients itérés d'un générateur markovien-développements de moyennes et entropies
-
LEDOUX, M. (1995). L'algèbre de Lie des gradients itérés d'un générateur markovien-développements de moyennes et entropies. Ann. Sci. École Norm. Sup. (4) 28 435-460. MR1334608
-
(1995)
Ann. Sci. École Norm. Sup
, vol.4
, Issue.28
, pp. 435-460
-
-
Ledoux, M.1
-
12
-
-
0000614531
-
The geometry of Markov diffusion generators: Probability theory
-
LEDOUX, M. (2000). The geometry of Markov diffusion generators: Probability theory. Ann. Fac. Sci. Toulouse Math. (6) 9 305-366. MR1813804
-
(2000)
Ann. Fac. Sci. Toulouse Math
, vol.6
, Issue.9
, pp. 305-366
-
-
Ledoux, M.1
-
14
-
-
64249132864
-
Noncentral convergence of multiple integrals
-
NOURDIN, I. and PECCATI, G. (2009). Noncentral convergence of multiple integrals. Ann. Probab. 37 1412-1426. MR2546749
-
(2009)
Ann. Probab
, vol.37
, pp. 1412-1426
-
-
Nourdin, I.1
Peccati, G.2
-
15
-
-
77957150726
-
Invariance principles for homogeneous sums: Universality of Gaussian Wiener chaos
-
NOURDIN, I., PECCATI, G. and REINERT, G. (2010). Invariance principles for homogeneous sums: Universality of Gaussian Wiener chaos. Ann. Probab. 38 1947-1985. MR2722791
-
(2010)
Ann. Probab
, vol.38
, pp. 1947-1985
-
-
Nourdin, I.1
Peccati, G.2
Reinert, G.3
-
17
-
-
77952556257
-
Multivariate normal approximation using Stein's method and Malliavin calculus
-
NOURDIN, I., PECCATI, G. and RÉVEILLAC, A. (2010). Multivariate normal approximation using Stein's method and Malliavin calculus. Ann. Inst. Henri Poincaré Probab. Stat. 46 45-58. MR2641769
-
(2010)
Ann. Inst. Henri Poincaré Probab. Stat
, vol.46
, pp. 45-58
-
-
Nourdin, I.1
Peccati, G.2
Réveillac, A.3
-
19
-
-
39149144861
-
Central limit theorems for multiple stochastic integrals and Malliavin calculus
-
NUALART, D. and ORTIZ-LATORRE, S. (2008). Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stochastic Process. Appl. 118 614-628. MR2394845
-
(2008)
Stochastic Process. Appl
, vol.118
, pp. 614-628
-
-
Nualart, D.1
Ortiz-Latorre, S.2
-
20
-
-
14944377936
-
Central limit theorems for sequences of multiple stochastic integrals
-
NUALART, D. and PECCATI, G. (2005). Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 177-193. MR2118863
-
(2005)
Ann. Probab
, vol.33
, pp. 177-193
-
-
Nualart, D.1
Peccati, G.2
-
21
-
-
77953608052
-
Stein's method and normal approximation of Poisson functionals
-
PECCATI, G., SOLÉ, J. L., TAQQU, M. S. and UTZET, F. (2010). Stein's method and normal approximation of Poisson functionals. Ann. Probab. 38 443-478. MR2642882
-
(2010)
Ann. Probab
, vol.38
, pp. 443-478
-
-
Peccati, G.1
Solé, J.L.2
Taqqu, M.S.3
Utzet, F.4
-
23
-
-
85007107687
-
Gaussian limits for vector-valued multiple stochastic integrals
-
Springer, Berlin
-
PECCATI, G. and TUDOR, C. A. (2005). Gaussian limits for vector-valued multiple stochastic integrals. In Séminaire de Probabilités XXXVIII. Lecture Notes in Math. 1857 247-262. Springer, Berlin. MR2126978
-
(2005)
Séminaire de Probabilités XXXVIII. Lecture Notes in Math.
, vol.1857
, pp. 247-262
-
-
Peccati, G.1
Tudor, C.A.2
-
24
-
-
78649701667
-
Multi-dimensional Gaussian fluctuations on the Poisson space
-
PECCATI, G. and ZHENG, C. (2010). Multi-dimensional Gaussian fluctuations on the Poisson space. Electron. J. Probab. 15 1487-1527. MR2727319
-
(2010)
Electron. J. Probab
, vol.15
, pp. 1487-1527
-
-
Peccati, G.1
Zheng, C.2
-
26
-
-
67349131956
-
Three general approaches to Stein's method. In An Introduction to Stein's Method
-
Singapore Univ. Press, Singapore
-
REINERT, G. (2005). Three general approaches to Stein's method. In An Introduction to Stein's Method. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 4 183-221. Singapore Univ. Press, Singapore. MR2235451
-
(2005)
Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap.
, vol.4
, pp. 183-221
-
-
Reinert, G.1
-
28
-
-
0004021335
-
-
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] Springer, Berlin
-
YOSIDA, K. (1995). Functional Analysis, 6th ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 123. Springer, Berlin. MR0617913
-
(1995)
Functional Analysis, 6th ed.
, vol.123
-
-
Yosida, K.1
|