메뉴 건너뛰기




Volumn 37, Issue 5, 2013, Pages 2983-2994

Integration modified wavelet neural networks for solving thin plate bending problem

Author keywords

Chaos; Integration; MWNN; Spline wavelet; Thin plate bending

Indexed keywords

ACTIVATION FUNCTIONS; CHAOS PARTICLE SWARM OPTIMIZATIONS; DIFFERENT DISTRIBUTIONS; FOURTH-ORDER; GOVERNING EQUATIONS; INTEGRATION PROCESS; MULTIPLE BOUNDARY CONDITION; MWNN; SCALING FUNCTIONS; SCATTERED POINTS; SPLINE WAVELETS; THIN-PLATE BENDING; WAVELET NEURAL NETWORKS;

EID: 84872499234     PISSN: 0307904X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apm.2012.07.036     Document Type: Article
Times cited : (15)

References (37)
  • 3
    • 0019183317 scopus 로고
    • A study of three-node triangular plate bending elements
    • Batoz J.L., Bathe K.J., Ho L.W. A study of three-node triangular plate bending elements. Int. J. Numer. Methods Eng. 1980, 15(12):1771-1812.
    • (1980) Int. J. Numer. Methods Eng. , vol.15 , Issue.12 , pp. 1771-1812
    • Batoz, J.L.1    Bathe, K.J.2    Ho, L.W.3
  • 4
    • 0020203866 scopus 로고
    • Evaluation of a new quadrilateral thin plate bending element
    • Batoz J.L., Tahar M.B. Evaluation of a new quadrilateral thin plate bending element. Int. J. Numer. Methods Eng. 1982, 18(11):1655-1677.
    • (1982) Int. J. Numer. Methods Eng. , vol.18 , Issue.11 , pp. 1655-1677
    • Batoz, J.L.1    Tahar, M.B.2
  • 5
    • 0026944361 scopus 로고
    • On a simple triangular Reissner/Mindlin plate element based on incompatible modes and discrete constrains
    • Batoz J.L., Katili I. On a simple triangular Reissner/Mindlin plate element based on incompatible modes and discrete constrains. Int. J. Numer. Methods Eng. 1992, 35(8):1603-1632.
    • (1992) Int. J. Numer. Methods Eng. , vol.35 , Issue.8 , pp. 1603-1632
    • Batoz, J.L.1    Katili, I.2
  • 6
    • 33750366856 scopus 로고    scopus 로고
    • A wavelet-based stochastic finite element method of thin plate bending
    • Han J.G., Ren W.X., Huang Y. A wavelet-based stochastic finite element method of thin plate bending. Appl. Math. Model. 2007, 31(2):181-193.
    • (2007) Appl. Math. Model. , vol.31 , Issue.2 , pp. 181-193
    • Han, J.G.1    Ren, W.X.2    Huang, Y.3
  • 7
    • 67249119471 scopus 로고    scopus 로고
    • Exact bending analysis of fully clamped rectangular thin plates subjected to arbitrary loads by new symplectic approach
    • Zhong Y., Li R. Exact bending analysis of fully clamped rectangular thin plates subjected to arbitrary loads by new symplectic approach. Mech. Res. Commun. 2009, 36:707-714.
    • (2009) Mech. Res. Commun. , vol.36 , pp. 707-714
    • Zhong, Y.1    Li, R.2
  • 8
    • 85136402625 scopus 로고
    • Tables of moments and deflections for a rectangular plate fixed on all edges and carrying a uniformly distributed load
    • Evans T.H. Tables of moments and deflections for a rectangular plate fixed on all edges and carrying a uniformly distributed load. J. Appl. Mech. 1939, 6:7-10.
    • (1939) J. Appl. Mech. , vol.6 , pp. 7-10
    • Evans, T.H.1
  • 10
    • 34548076672 scopus 로고    scopus 로고
    • The problem of isotropic rectangular plate with for clamped edges
    • Imrak C.E., Gerdemeli I. The problem of isotropic rectangular plate with for clamped edges. SADHANA 2007, 32:181-186.
    • (2007) SADHANA , vol.32 , pp. 181-186
    • Imrak, C.E.1    Gerdemeli, I.2
  • 11
    • 70449119077 scopus 로고    scopus 로고
    • The delection solution of a clamped rectangular thin plate carrying uniformly load
    • Imrak C.E., Fetvaci C. The delection solution of a clamped rectangular thin plate carrying uniformly load. Mech. Des. Struct. Mach. 2009, 37(4):462-474.
    • (2009) Mech. Des. Struct. Mach. , vol.37 , Issue.4 , pp. 462-474
    • Imrak, C.E.1    Fetvaci, C.2
  • 12
    • 50149117517 scopus 로고    scopus 로고
    • New approach to applying neural network in nonlinear dynamic model
    • Härter F.P., de Campos Velho Haroldo Fraga New approach to applying neural network in nonlinear dynamic model. Appl. Math. Model. 2008, 32:2621-2633.
    • (2008) Appl. Math. Model. , vol.32 , pp. 2621-2633
    • Härter, F.P.1    de Campos Velho, H.F.2
  • 13
    • 77956138715 scopus 로고    scopus 로고
    • Structural optimization by wavelet transforms and neural networks
    • Gholizadeh S., Samavati O.A. Structural optimization by wavelet transforms and neural networks. Appl. Math. Model. 2011, 35:919-929.
    • (2011) Appl. Math. Model. , vol.35 , pp. 919-929
    • Gholizadeh, S.1    Samavati, O.A.2
  • 14
    • 38149146627 scopus 로고
    • The numerical solution of linear ordinary differential equations by feedforward neural networks
    • Meade A.J., Fernandez A.A. The numerical solution of linear ordinary differential equations by feedforward neural networks. Math. Comput. Model. 1994, 19(12):1-25.
    • (1994) Math. Comput. Model. , vol.19 , Issue.12 , pp. 1-25
    • Meade, A.J.1    Fernandez, A.A.2
  • 15
    • 0002967446 scopus 로고
    • Solution of nonlinear ordinary differential equations by feedforward neural networks
    • Meade A.J., Fernandez A.A. Solution of nonlinear ordinary differential equations by feedforward neural networks. Math. Comput. Model. 1994, 20(9):19-44.
    • (1994) Math. Comput. Model. , vol.20 , Issue.9 , pp. 19-44
    • Meade, A.J.1    Fernandez, A.A.2
  • 16
    • 4243809461 scopus 로고
    • Neural network differential equation and plasma equilibrium solver
    • Milligen B.P., Tribaldos V., Jiménez J.A. Neural network differential equation and plasma equilibrium solver. Phys. Rev. Lett. 1995, 75(20):3594-3597.
    • (1995) Phys. Rev. Lett. , vol.75 , Issue.20 , pp. 3594-3597
    • Milligen, B.P.1    Tribaldos, V.2    Jiménez, J.A.3
  • 17
    • 0032165970 scopus 로고    scopus 로고
    • Artificial neural networks for solving ordinary and partial differential equations
    • Lagaris I.E., Linkas A., Fotiadis D.I. Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Networks 1998, 9:987-1000.
    • (1998) IEEE Trans. Neural Networks , vol.9 , pp. 987-1000
    • Lagaris, I.E.1    Linkas, A.2    Fotiadis, D.I.3
  • 18
    • 0033428168 scopus 로고    scopus 로고
    • Approximation of functions and their derivatives: a neural network implementation with applications
    • Nguyen-Thien T., Tran-Cong T. Approximation of functions and their derivatives: a neural network implementation with applications. Appl. Math. Model. 1999, 23:687-704.
    • (1999) Appl. Math. Model. , vol.23 , pp. 687-704
    • Nguyen-Thien, T.1    Tran-Cong, T.2
  • 19
    • 0346750593 scopus 로고    scopus 로고
    • Computation of boundary control of controlled hear equation using artificial neural networks
    • Sukavanam N., Panwar V. Computation of boundary control of controlled hear equation using artificial neural networks. Int. Commun. Heat Mass Transfer 2003, 30(8):1137-1146.
    • (2003) Int. Commun. Heat Mass Transfer , vol.30 , Issue.8 , pp. 1137-1146
    • Sukavanam, N.1    Panwar, V.2
  • 23
    • 14844299783 scopus 로고    scopus 로고
    • Antinoise approximation of the lidar signal with wavelet neural networks
    • Fang H.T., Huang D.S., Wu Y.H. Antinoise approximation of the lidar signal with wavelet neural networks. Appl. Opt. 2005, 44(6):1077-1083.
    • (2005) Appl. Opt. , vol.44 , Issue.6 , pp. 1077-1083
    • Fang, H.T.1    Huang, D.S.2    Wu, Y.H.3
  • 24
    • 77955806463 scopus 로고    scopus 로고
    • Comparison between beta wavelets neural networks, RBF neural networks and polynomial approximation for 1D, 2D functions approximation
    • Bellil W., Amar C.B., Alimi A.M. Comparison between beta wavelets neural networks, RBF neural networks and polynomial approximation for 1D, 2D functions approximation. World Acad. Sci. Eng. Technol. 2006, 13:102-107.
    • (2006) World Acad. Sci. Eng. Technol. , vol.13 , pp. 102-107
    • Bellil, W.1    Amar, C.B.2    Alimi, A.M.3
  • 25
    • 50149114113 scopus 로고    scopus 로고
    • Artificial wavelet neural network and its application in neuro-fuzzy models
    • Banakar A., Azeem M.F. Artificial wavelet neural network and its application in neuro-fuzzy models. Appl. Soft Comput. 2008, 8(4):1463-1485.
    • (2008) Appl. Soft Comput. , vol.8 , Issue.4 , pp. 1463-1485
    • Banakar, A.1    Azeem, M.F.2
  • 26
    • 70049097936 scopus 로고    scopus 로고
    • Development of model building procedures in wavelet neural networks for forecasting non-stationary time series
    • Suhartono Subabar. Development of model building procedures in wavelet neural networks for forecasting non-stationary time series. Eur. J. Sci. Res. 2009, 34(3):416-427.
    • (2009) Eur. J. Sci. Res. , vol.34 , Issue.3 , pp. 416-427
    • Suhartono, S.1
  • 28
    • 0036825823 scopus 로고    scopus 로고
    • A basis selection algorithm for wavelet neural networks
    • Xu J.H., Ho D.W.C. A basis selection algorithm for wavelet neural networks. Neurocomputing 2002, 48:681-689.
    • (2002) Neurocomputing , vol.48 , pp. 681-689
    • Xu, J.H.1    Ho, D.W.C.2
  • 29
    • 84872500951 scopus 로고    scopus 로고
    • An Introduction to Wavelet, Cheng ZX, Translate Xi'an, Xi'an Jiao tong University Press, (in Chinese).
    • C.K. Chui, An Introduction to Wavelet, Cheng ZX, Translate Xi'an, Xi'an Jiao tong University Press, 1997 (in Chinese).
    • (1997)
    • Chui, C.K.1
  • 30
    • 1542353202 scopus 로고    scopus 로고
    • On structures of supervised linear basis function feedforward three-layered neural networks
    • Gao D.Q. On structures of supervised linear basis function feedforward three-layered neural networks. J. Comput. (China) 1998, 21(1):80-86.
    • (1998) J. Comput. (China) , vol.21 , Issue.1 , pp. 80-86
    • Gao, D.Q.1
  • 31
    • 26444454974 scopus 로고    scopus 로고
    • A Comparison of GA and PSO for Excess Return Evaluation in Stock Markets
    • Lee J.S., Lee S., Chang S., Ahn B.H. A Comparison of GA and PSO for Excess Return Evaluation in Stock Markets. Springer-Verlag 2005, 221-230.
    • (2005) Springer-Verlag , pp. 221-230
    • Lee, J.S.1    Lee, S.2    Chang, S.3    Ahn, B.H.4
  • 33
    • 0033666935 scopus 로고    scopus 로고
    • Comparing inertia weight and constriction factors in particle swarm optimization
    • Eberhart R.C., Shi Y. Comparing inertia weight and constriction factors in particle swarm optimization. Proc. Congr. Evolut. Comput. San Diego 2000.
    • (2000) Proc. Congr. Evolut. Comput. San Diego
    • Eberhart, R.C.1    Shi, Y.2
  • 34
    • 23344434757 scopus 로고    scopus 로고
    • Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization
    • Chatterjeea A., Siarry P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Comput. Oper. Res. 2006, 33(3):859-871.
    • (2006) Comput. Oper. Res. , vol.33 , Issue.3 , pp. 859-871
    • Chatterjeea, A.1    Siarry, P.2
  • 35
    • 33746239398 scopus 로고    scopus 로고
    • Adaptive inertia weight particle swarm optimization
    • Qin Z., Yu F., Shi Z.W., Wang Y. Adaptive inertia weight particle swarm optimization. ICAISC 2006, 4029:450-459.
    • (2006) ICAISC , vol.4029 , pp. 450-459
    • Qin, Z.1    Yu, F.2    Shi, Z.W.3    Wang, Y.4
  • 36
    • 77957217869 scopus 로고
    • On the chaotic behaviour of the tent map
    • Crampin M., Heal B. On the chaotic behaviour of the tent map. Teaching Math. Appl. 1994, 13(2):83-89.
    • (1994) Teaching Math. Appl. , vol.13 , Issue.2 , pp. 83-89
    • Crampin, M.1    Heal, B.2
  • 37
    • 0037933475 scopus 로고    scopus 로고
    • Exact mixed-classical solutions for the bending analysis of shear deformable rectangular plates
    • Zenkour A.M. Exact mixed-classical solutions for the bending analysis of shear deformable rectangular plates. Appl. Math. Model. 2003, 27:515-534.
    • (2003) Appl. Math. Model. , vol.27 , pp. 515-534
    • Zenkour, A.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.