메뉴 건너뛰기




Volumn 6, Issue 1, 2013, Pages 47-63

Parameters control in GAs for dynamic optimization

Author keywords

Dynamic Optimization; Evolutionary Algorithms; Fitness Sharing; Fuzzy Clustering; Generalized dynamic benchmark generator (GDBG); Genetic Algorithms; Multi modal function optimization; Unsupervised Learning

Indexed keywords

ALGORITHM PARAMETERS; DIVERSITY MEASURE; DYNAMIC OPTIMIZATION; DYNAMIC OPTIMIZATION PROBLEM (DOP); FITNESS SHARING; FUZZY CLUSTERING METHOD; GAS PARAMETERS; GENERALIZED DYNAMIC BENCHMARK GENERATOR (GDBG); GENETIC OPERATORS; MULTIMODAL FUNCTION OPTIMIZATION; MULTIPLE CROSSOVER; NON-UNIFORM MUTATION; NOVEL TECHNIQUES; SEARCH PROCESS; SEARCH SPACES; SELECTION PRESSURES; SELF-ADAPTIVE MUTATION; STATIC OPTIMIZATION;

EID: 84872420102     PISSN: 18756891     EISSN: 18756883     Source Type: Journal    
DOI: 10.1080/18756891.2013.754172     Document Type: Article
Times cited : (7)

References (37)
  • 1
    • 21044438483 scopus 로고    scopus 로고
    • Evolutionary optimization in uncertain environments: a survey
    • Jin, Y. and Branke, J. 2005. Evolutionary optimization in uncertain environments: a survey. IEEE Trans Evol Comput, 9(3): 303-317.
    • (2005) IEEE Trans Evol Comput , vol.9 , Issue.3 , pp. 303-317
    • Jin, Y.1    Branke, J.2
  • 5
    • 27144432709 scopus 로고    scopus 로고
    • Population-based incremental learning with associative memory for dynamic environments
    • S. Yang, X. Yao, "Population-based incremental learning with associative memory for dynamic environments", IEEE Trans Evol Comput. 2007
    • (2007) IEEE Trans Evol Comput.
    • Yang, S.1    Yao, X.2
  • 7
    • 70449651342 scopus 로고    scopus 로고
    • Unsupervised fuzzy learning and cluster seeking
    • Bouroumi, A. and Essaïdi, A. 2000. Unsupervised fuzzy learning and cluster seeking. Intelligent Data Analysis, 4(3): 241-253.
    • (2000) Intelligent Data Analysis , vol.4 , Issue.3 , pp. 241-253
    • Bouroumi, A.1    Essaïdi, A.2
  • 8
    • 53349178106 scopus 로고    scopus 로고
    • Population-based incremental learning with associative memory for dynamic environments
    • Yang, S. and Yao, X. 2008. Population-based incremental learning with associative memory for dynamic environments. IEEE Trans Evol Comput, 12(5): 542-561.
    • (2008) IEEE Trans Evol Comput , vol.12 , Issue.5 , pp. 542-561
    • Yang, S.1    Yao, X.2
  • 9
    • 34547900595 scopus 로고    scopus 로고
    • A self-organizing random immigrants genetic algorithm for dynamic optimization problems
    • Cedeno, W. and Vemuri, V. R. 2007. A self-organizing random immigrants genetic algorithm for dynamic optimization problems. Genetic Programming and Evolvable Machines, 8(3): 255-286.
    • (2007) Genetic Programming and Evolvable Machines , vol.8 , Issue.3 , pp. 255-286
    • Cedeno, W.1    Vemuri, V.R.2
  • 10
    • 0003497966 scopus 로고
    • An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments
    • Washington, D.C, Washington, D.C
    • H.G. Cobb An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments, Technical Report 6760 (NLR Memorandum)., Washington, D.C1990.
    • (1990) Technical Report , vol.6760
    • Cobb, H.G.1
  • 11
    • 0001119607 scopus 로고
    • Real-coded Genetic Algorhithms with Simulated Binary Crossover:Studies on Multimodel and Multiobjective Problems
    • Deb, K. and Kumar, A. 1995. Real-coded Genetic Algorhithms with Simulated Binary Crossover:Studies on Multimodel and Multiobjective Problems. Complex Systems, 9(6): 431-454.
    • (1995) Complex Systems , vol.9 , Issue.6 , pp. 431-454
    • Deb, K.1    Kumar, A.2
  • 12
    • 0000991259 scopus 로고
    • Simulated binary crossover for continuous search space
    • Deb, K. and Agrawal, R.B. 1995. Simulated binary crossover for continuous search space. Complex systems, 9(2): 115-148.
    • (1995) Complex systems , vol.9 , Issue.2 , pp. 115-148
    • Deb, K.1    Agrawal, R.B.2
  • 13
    • 79960494768 scopus 로고    scopus 로고
    • Parameter tuning for configuring and analyzing evolutionary algorithms
    • Eiben, A.E. and Smit, S. K. 2011. Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm and Evolutionary Computation, 1(1): 19-31.
    • (2011) Swarm and Evolutionary Computation , vol.1 , Issue.1 , pp. 19-31
    • Eiben, A.E.1    Smit, S.K.2
  • 14
    • 84869478345 scopus 로고    scopus 로고
    • Adaptive directed mutation for real-coded genetic algorithms
    • Tanga, P.H. and Tsenga, M.H. 2013. Adaptive directed mutation for real-coded genetic algorithms. Applied Soft Computing, 13(1): 600-614.
    • (2013) Applied Soft Computing , vol.13 , Issue.1 , pp. 600-614
    • Tanga, P.H.1    Tsenga, M.H.2
  • 17
    • 34547415990 scopus 로고    scopus 로고
    • A hybrid immigrants scheme for genetic algorithms in dynamic environments
    • Grefenstette, J.J. 2007. A hybrid immigrants scheme for genetic algorithms in dynamic environments. Int J Autom Comput, 4(3): 243-254.
    • (2007) Int J Autom Comput , vol.4 , Issue.3 , pp. 243-254
    • Grefenstette, J.J.1
  • 19
    • 0031999908 scopus 로고    scopus 로고
    • Nearest prototype classification: clustering, genetic algorithms or random search
    • Kuncheva, L.I. and Bezdek, J.C. 1998. Nearest prototype classification: clustering, genetic algorithms or random search. IEEE Trans. Systems Man Cybernet, C 28(1): 160-164.
    • (1998) IEEE Trans. Systems Man Cybernet , vol.C 28 , Issue.1 , pp. 160-164
    • Kuncheva, L.I.1    Bezdek, J.C.2
  • 22
    • 55749084033 scopus 로고    scopus 로고
    • An immigrants scheme based on environmental information for genetic algorithms in changing environments
    • S.J. Louis, Z. Xu, " An immigrants scheme based on environmental information for genetic algorithms in changing environments ", In: Proceedings of the 2008 IEEE congress on evolutionary computation, 1141-1147, 2008.
    • (2008) Proceedings of the 2008 IEEE congress on evolutionary computation , pp. 1141-1147
    • Louis, S.J.1    Xu, Z.2
  • 24
    • 0026430360 scopus 로고
    • Haploidy or Diploidy: Which is Better?
    • Kondrashov, A. S and Crow, J. F. 1994. Haploidy or Diploidy: Which is Better?. Nature, 351: 314-315.
    • (1994) Nature , vol.351 , pp. 314-315
    • Kondrashov, A.S.1    Crow, J.F.2
  • 26
    • 0032155883 scopus 로고    scopus 로고
    • Fitness sharing and niching methods revisited
    • Saäreni, B. and Krähenbühl, L. 1998. Fitness sharing and niching methods revisited. IEEE Trans. Evol. Comput, 2(3): 97-106.
    • (1998) IEEE Trans. Evol. Comput , vol.2 , Issue.3 , pp. 97-106
    • Saäreni, B.1    Krähenbühl, L.2
  • 27
    • 4344568849 scopus 로고    scopus 로고
    • Multinational GAs: Multimodal optimization techniques in dynamic environments
    • Morgan Kaufmann, San Francisco, Morgan Kaufmann, San Francisco
    • R.K. Ursem, Multinational GAs: Multimodal optimization techniques in dynamic environments, In: Proc. of (GECCO'2000), Morgan Kaufmann, San Francisco, 19-26 2000.
    • (2000) Proc. of (GECCO'2000) , pp. 19-26
    • Ursem, R.K.1
  • 28
    • 34547457318 scopus 로고    scopus 로고
    • Genetic algorithms with elitism-based immigrants for changing optimization problems
    • Yang, S. 2007. Genetic algorithms with elitism-based immigrants for changing optimization problems. Applications of Evolutionary Computing LNCS, 4448: 627-636.
    • (2007) Applications of Evolutionary Computing LNCS , vol.4448 , pp. 627-636
    • Yang, S.1
  • 29
    • 32444434062 scopus 로고    scopus 로고
    • Memory-based immigrants for genetic algorithms in dynamic environment
    • ACM Press, New York, New York
    • S. Yang, Memory-based immigrants for genetic algorithms in dynamic environment, Proc. of (GECCO'05) ACM Press, New York, 1115-1122 2005.
    • (2005) Proc. of (GECCO'05) , pp. 1115-1122
    • Yang, S.1
  • 30
    • 0002284602 scopus 로고
    • An investigation of niche and species formation in genetic function optimization
    • In: Schaffer, editors:, Morgan Kaufmann, Morgan Kaufmann
    • K. deb, and D. Goldberg, An investigation of niche and species formation in genetic function optimization,:In: Schaffer Proceedings of the Third International Conference on Genetic Algorithms. Morgan Kaufmann, 42-50 1989.
    • (1989) Proceedings of the Third International Conference on Genetic Algorithms , pp. 42-50
    • deb, K.1    Goldberg, D.2
  • 31
    • 27144512263 scopus 로고    scopus 로고
    • Multiobjective optimization for dynamic environments
    • Bui, L.T., Abbass, H.A. and Branke, J. 2005. Multiobjective optimization for dynamic environments. in Proc. Congr. Evol. Comput., 3: 2349-2356.
    • (2005) Proc. Congr. Evol. Comput. , vol.3 , pp. 2349-2356
    • Bui, L.T.1    Abbass, H.A.2    Branke, J.3
  • 32
    • 84872384240 scopus 로고    scopus 로고
    • Immune-based algorithms for dynamic optimization
    • Trojanowski, K and Wierzchon, S. 2008. Immune-based algorithms for dynamic optimization. Applied Soft Computing, 8(2): 1495-1515.
    • (2008) Applied Soft Computing , vol.8 , Issue.2 , pp. 1495-1515
    • Trojanowski, K.1    Wierzchon, S.2
  • 34
    • 77956519730 scopus 로고    scopus 로고
    • Self-adaptation of mutation operator and probability for permutation representations in genetic algorithms
    • Serpell, M. and Smith, J.E. 2010. Self-adaptation of mutation operator and probability for permutation representations in genetic algorithms. Evolutionary Computation MIT Press, 18(3): 491-514.
    • (2010) Evolutionary Computation MIT Press , vol.18 , Issue.3 , pp. 491-514
    • Serpell, M.1    Smith, J.E.2
  • 36
    • 79957885701 scopus 로고    scopus 로고
    • Investigation of genetic algorithms with self-adaptive crossover, mutation, and selection
    • M. Smetek, and B. Trawiński, Investigation of genetic algorithms with self-adaptive crossover, mutation, and selection, Hybrid Artificial Intelligent Systems, 116 123, 2011.
    • (2011) Hybrid Artificial Intelligent Systems , pp. 116-123
    • Smetek, M.1    Trawiński, B.2
  • 37
    • 34250179835 scopus 로고    scopus 로고
    • Clustering based adaptive crossover and mutation probabilities for genetic algorithms
    • Zhang, J., Chung, H.S.H. and Lo, W.L. 2007. Clustering based adaptive crossover and mutation probabilities for genetic algorithms. Evolutionary Computation, IEEE Transactions., 11(3): 326-335.
    • (2007) Evolutionary Computation, IEEE Transactions. , vol.11 , Issue.3 , pp. 326-335
    • Zhang, J.1    Chung, H.S.H.2    Lo, W.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.