메뉴 건너뛰기




Volumn 6, Issue 1, 2013, Pages 96-114

Ensemble ANNs-PSO-GA Approach for Day-ahead Stock E-exchange Prices Forecasting

Author keywords

artificial neural networks; ensemble forecasting; genetic operator; particle swarm optimization; stock e exchange prices

Indexed keywords

ELMAN NETWORK; ENSEMBLE FORECASTING; FINANCIAL PROBLEMS; FORECASTING MODELS; GENERALIZED REGRESSION NEURAL NETWORKS; GENETIC OPERATORS; INDIVIDUAL MODELS; LINEAR COMBINATION MODEL; META MODEL; NON-LINEAR RELATIONSHIPS; NONLINEAR ENSEMBLE MODEL; PREDICTION PERFORMANCE; PRICES FORECASTING; STOCK E-EXCHANGE PRICES; STOCK INDICES; TRAINING SETS; WAVELET NEURAL NETWORKS;

EID: 84872390465     PISSN: 18756891     EISSN: 18756883     Source Type: Journal    
DOI: 10.1080/18756891.2013.756227     Document Type: Article
Times cited : (36)

References (44)
  • 1
    • 84864712166 scopus 로고    scopus 로고
    • A hybrid forecasting model for non-stationary time series: an application to container throughput prediction
    • Xiao, Y., Xiao, J. and Wang, S. Y. 2012. A hybrid forecasting model for non-stationary time series: an application to container throughput prediction. International Journal of Knowledge and Systems Science., 3(2): 67-82.
    • (2012) International Journal of Knowledge and Systems Science. , vol.3 , Issue.2 , pp. 67-82
    • Xiao, Y.1    Xiao, J.2    Wang, S.Y.3
  • 2
    • 84864705386 scopus 로고    scopus 로고
    • A hybrid model for time series forecasting
    • Xiao, Y., Xiao, J. and Wang, S. Y. 2012. A hybrid model for time series forecasting. Human Systems Management., 31(2): 133-143.
    • (2012) Human Systems Management. , vol.31 , Issue.2 , pp. 133-143
    • Xiao, Y.1    Xiao, J.2    Wang, S.Y.3
  • 5
    • 84872411847 scopus 로고    scopus 로고
    • A multiscale modeling approach incorporating ARIMA and ANNs for financial market volatility forecasting
    • Beijing, Forthcoming
    • Y. Xiao, J. Xiao and S. Y. Wang, A multiscale modeling approach incorporating ARIMA and ANNs for financial market volatility forecasting, in: Proc. Int. Conf. Forecasting Economic and Financial Systems, Beijing, China, 2012, Forthcoming.
    • (2012)
    • Xiao, Y.1    Xiao, J.2    Wang, S.Y.3
  • 6
    • 0030130831 scopus 로고    scopus 로고
    • Using percentage accuracy to measure neural network predictions in Stock Market movements
    • Brownstone, D. 1996. Using percentage accuracy to measure neural network predictions in Stock Market movements. Neurocomputing., 10: 237-250.
    • (1996) Neurocomputing. , vol.10 , pp. 237-250
    • Brownstone, D.1
  • 7
    • 0000125983 scopus 로고    scopus 로고
    • Improving returns on stock investment through neural network selection
    • Quah, T. S. and Srinivasan, B. 1999. Improving returns on stock investment through neural network selection. Expert Systems with Applications., 17: 295-301.
    • (1999) Expert Systems with Applications. , vol.17 , pp. 295-301
    • Quah, T.S.1    Srinivasan, B.2
  • 8
    • 0035255160 scopus 로고    scopus 로고
    • An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network
    • Kuo, R. J., Chen, C. H. and Hwang, Y. C. 2001. An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network. Fuzzy Sets Systems., 118: 21-45.
    • (2001) Fuzzy Sets Systems. , vol.118 , pp. 21-45
    • Kuo, R.J.1    Chen, C.H.2    Hwang, Y.C.3
  • 9
    • 0348001802 scopus 로고    scopus 로고
    • Research of neural network methods for compound stock exchange indices analysis
    • Plikynas, D., Simanauskas, L. and Buda, S. 2002. Research of neural network methods for compound stock exchange indices analysis. Informatica-Lithuan., 13: 465-484.
    • (2002) Informatica-Lithuan. , vol.13 , pp. 465-484
    • Plikynas, D.1    Simanauskas, L.2    Buda, S.3
  • 10
    • 35048851605 scopus 로고    scopus 로고
    • Automating stock prediction with neural network and evolutionary computation
    • Ao, S. I. 2003. Automating stock prediction with neural network and evolutionary computation. Lecture Notes in Computer Science., 2690: 203-210.
    • (2003) Lecture Notes in Computer Science. , vol.2690 , pp. 203-210
    • Ao, S.I.1
  • 11
    • 35048849630 scopus 로고    scopus 로고
    • Forecasting the volatility of stock index returns: A Stochastic neural network approach
    • Slim, C. 2004. Forecasting the volatility of stock index returns: A Stochastic neural network approach. Lecture Notes in Computer Science., 3045: 935-944.
    • (2004) Lecture Notes in Computer Science. , vol.3045 , pp. 935-944
    • Slim, C.1
  • 12
    • 33746903994 scopus 로고    scopus 로고
    • A neural network approach to predicting stock exchange movements using external factors
    • O'Connor, N. and Madden, M. G. 2006. A neural network approach to predicting stock exchange movements using external factors. Knowledge-Based Systems., 19: 371-378.
    • (2006) Knowledge-Based Systems. , vol.19 , pp. 371-378
    • O'Connor, N.1    Madden, M.G.2
  • 13
    • 37249055046 scopus 로고    scopus 로고
    • A comparison of neural network model selection strategies for the pricing of S&P 500 stock index options
    • Thomaidis, N. S., Tzastoudis, V. S. and Dounias, G. D. 2007. A comparison of neural network model selection strategies for the pricing of S&P 500 stock index options. Int. J. on Artificial Intelligence Tools., 16: 1093-1113.
    • (2007) Int. J. on Artificial Intelligence Tools. , vol.16 , pp. 1093-1113
    • Thomaidis, N.S.1    Tzastoudis, V.S.2    Dounias, G.D.3
  • 14
    • 70349464843 scopus 로고    scopus 로고
    • Forecasting model of global stock index by stochastic time effective neural network
    • Liao, Z. and Wang, J. 2010. Forecasting model of global stock index by stochastic time effective neural network. Expert Systems with Applications., 37: 834-841.
    • (2010) Expert Systems with Applications. , vol.37 , pp. 834-841
    • Liao, Z.1    Wang, J.2
  • 15
    • 79953724824 scopus 로고    scopus 로고
    • Using artificial neural network models in stock market index prediction
    • Guresen, E., Kayakutlu, G. and Daim, T. U. 2011. Using artificial neural network models in stock market index prediction. Expert Systems with Applications., 38: 10389-10397.
    • (2011) Expert Systems with Applications. , vol.38 , pp. 10389-10397
    • Guresen, E.1    Kayakutlu, G.2    Daim, T.U.3
  • 16
    • 78650699256 scopus 로고    scopus 로고
    • A modern neural network model to do stock market timing on the basis of the ancient investment technique of Japanese Candlestick
    • Jasemi, M., Kimiagari, A. M. and Memariani, A. 2011. A modern neural network model to do stock market timing on the basis of the ancient investment technique of Japanese Candlestick. Expert Systems with Applications., 38: 3884-3890.
    • (2011) Expert Systems with Applications. , vol.38 , pp. 3884-3890
    • Jasemi, M.1    Kimiagari, A.M.2    Memariani, A.3
  • 17
    • 20844436296 scopus 로고    scopus 로고
    • PSO as an effective learning algorithm for neural network applications
    • Beijing
    • E. Grimaldi, A. F. Grimaccia, M. Mussetta and R.E. Zich, PSO as an effective learning algorithm for neural network applications, in: Proc.3rd Int. Conf. Computational Electromagnetics and Its Applications, Beijing, China, 2004, pp. 557-560.
    • (2004) , pp. 557-560
    • Grimaldi, E.1    Grimaccia, A.F.2    Mussetta, M.3    Zich, R.E.4
  • 18
    • 78549243263 scopus 로고    scopus 로고
    • System identification and control using adaptive particle swarm optimization
    • Alfi, A. and Modares, H. 2011. System identification and control using adaptive particle swarm optimization. Applied Mathematical Modelling., 35: 1210-1221.
    • (2011) Applied Mathematical Modelling. , vol.35 , pp. 1210-1221
    • Alfi, A.1    Modares, H.2
  • 19
    • 79958279908 scopus 로고    scopus 로고
    • A poly-hybrid PSO optimization method with intelligent parameter adjustment
    • Wang, P. C. and Shoup, T. E. 2011. A poly-hybrid PSO optimization method with intelligent parameter adjustment. Advances in Engineering Software., 42: 555-565.
    • (2011) Advances in Engineering Software. , vol.42 , pp. 555-565
    • Wang, P.C.1    Shoup, T.E.2
  • 20
    • 35248829024 scopus 로고    scopus 로고
    • Integrating ensemble of intelligent systems for modeling stock indices
    • Abraham, A. and AuYeung, A. 2003. Integrating ensemble of intelligent systems for modeling stock indices. Lecture Notes in Computer Science., 2687: 774-781.
    • (2003) Lecture Notes in Computer Science. , vol.2687 , pp. 774-781
    • Abraham, A.1    AuYeung, A.2
  • 21
    • 35048896416 scopus 로고    scopus 로고
    • Evolutionary ensemble for stock prediction
    • Kwon, Y. K. and Moon, B. R. 2004. Evolutionary ensemble for stock prediction. Lecture Notes in Computer Science., 3103: 1102-1113.
    • (2004) Lecture Notes in Computer Science. , vol.3103 , pp. 1102-1113
    • Kwon, Y.K.1    Moon, B.R.2
  • 22
    • 13644257906 scopus 로고    scopus 로고
    • Dynamic adaptive ensemble case-based reasoning: application to stock market prediction
    • Chun, S. H. and Park, Y. J. 2005. Dynamic adaptive ensemble case-based reasoning: application to stock market prediction. Expert Systems with Applications., 28(3): 435-443.
    • (2005) Expert Systems with Applications. , vol.28 , Issue.3 , pp. 435-443
    • Chun, S.H.1    Park, Y.J.2
  • 23
    • 33845997779 scopus 로고    scopus 로고
    • Flexible neural trees ensemble for stock index modeling
    • Chen, Y. H., Yang, B. and Abraham, A. 2007. Flexible neural trees ensemble for stock index modeling. Neurocomputing., 70(4-6): 697-703.
    • (2007) Neurocomputing. , vol.70 , Issue.4-6 , pp. 697-703
    • Chen, Y.H.1    Yang, B.2    Abraham, A.3
  • 24
    • 78650693344 scopus 로고    scopus 로고
    • Forecast Combination by Using Artificial Neural Networks
    • Aladag, C. H., Egrioglu, E. and Yolcu, U. 2010. Forecast Combination by Using Artificial Neural Networks. Neural Processing Letters., 32(3): 269-276.
    • (2010) Neural Processing Letters. , vol.32 , Issue.3 , pp. 269-276
    • Aladag, C.H.1    Egrioglu, E.2    Yolcu, U.3
  • 25
    • 79955800605 scopus 로고    scopus 로고
    • Applying a combined fuzzy systems and GARCH model to adaptively forecast stock market volatility
    • Hung, J. C. 2011. Applying a combined fuzzy systems and GARCH model to adaptively forecast stock market volatility. Applied Soft Computing., 11(5): 3938-3945.
    • (2011) Applied Soft Computing. , vol.11 , Issue.5 , pp. 3938-3945
    • Hung, J.C.1
  • 26
    • 0034283989 scopus 로고    scopus 로고
    • A case study on using neural networks to perform technical forecasting of forex
    • Yao, J. T. and Tan, C. L. 2000. A case study on using neural networks to perform technical forecasting of forex. Neurocomputing., 34: 79-98.
    • (2000) Neurocomputing. , vol.34 , pp. 79-98
    • Yao, J.T.1    Tan, C.L.2
  • 27
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. 1996. Bagging predictors. Machine Learning., 26: 123-140.
    • (1996) Machine Learning. , vol.26 , pp. 123-140
    • Breiman, L.1
  • 28
    • 0030374103 scopus 로고    scopus 로고
    • Bootstrapping with noise: an effective regularization technique
    • Raviv, Y. and Intrator, N. 1996. Bootstrapping with noise: an effective regularization technique. Connection Science., 8: 355-372.
    • (1996) Connection Science. , vol.8 , pp. 355-372
    • Raviv, Y.1    Intrator, N.2
  • 29
    • 51249194645 scopus 로고
    • A logical calculus of the ideas imminent in nervous activity
    • McCulloch, W. S. and Pitts, W. 1943. A logical calculus of the ideas imminent in nervous activity. Bulletin and Mathematical Biophysics., 5: 115-133.
    • (1943) Bulletin and Mathematical Biophysics. , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 30
    • 26444565569 scopus 로고
    • Finding Structure in Time
    • Elman, J. L. 1990. Finding Structure in Time. Cognitive Science., 14: 179-211.
    • (1990) Cognitive Science. , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 31
    • 0001931220 scopus 로고
    • Dynamic system identification using partially recurrent neural networks
    • Pham, D. T. and Liu, X. 1992. Dynamic system identification using partially recurrent neural networks. Journal of Systems Engineering., 2(2): 90-97.
    • (1992) Journal of Systems Engineering. , vol.2 , Issue.2 , pp. 90-97
    • Pham, D.T.1    Liu, X.2
  • 33
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Parzen, E. 1962. On estimation of a probability density function and mode. Annals of Mathematical Statistics., 33: 1065-1076.
    • (1962) Annals of Mathematical Statistics. , vol.33 , pp. 1065-1076
    • Parzen, E.1
  • 35
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchocombe, M. and White, H. 1989. Multilayer feedforward networks are universal approximators. Neural Networks., 2: 359-366.
    • (1989) Neural Networks. , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchocombe, M.2    White, H.3
  • 36
    • 0034745995 scopus 로고    scopus 로고
    • Prediction of programmed-temperature retention values of naphthas by wavelet neural network
    • Zhang, X., Qi, J.Zhang, R. 2001. Prediction of programmed-temperature retention values of naphthas by wavelet neural network. Journal of Computational Chemistry., 25: 125
    • (2001) Journal of Computational Chemistry. , vol.25 , pp. 125
    • Zhang, X.1    Qi, J.2    Zhang, R.3
  • 37
    • 12444314024 scopus 로고    scopus 로고
    • A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimization
    • Jiang, C. W. and Etorre, B. 2005. A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimization. Mathematics and Computers in Simulation., 68(1): 57-65.
    • (2005) Mathematics and Computers in Simulation. , vol.68 , Issue.1 , pp. 57-65
    • Jiang, C.W.1    Etorre, B.2
  • 38
    • 33947119065 scopus 로고    scopus 로고
    • Hybrid simplex search and particle swarm optimization for unconstratined optimization problems
    • Fan, S. F. and Zahara, E. 2007. Hybrid simplex search and particle swarm optimization for unconstratined optimization problems. European Journal of Operational Research., 181(2): 527-548.
    • (2007) European Journal of Operational Research. , vol.181 , Issue.2 , pp. 527-548
    • Fan, S.F.1    Zahara, E.2
  • 39
    • 34247257749 scopus 로고    scopus 로고
    • Continuous functions minimization by dynamic random search technique
    • Hamzacebi, C. and Kutay, F. 2007. Continuous functions minimization by dynamic random search technique. Applied Mathematical Modelling., 31(10): 189-198.
    • (2007) Applied Mathematical Modelling. , vol.31 , Issue.10 , pp. 189-198
    • Hamzacebi, C.1    Kutay, F.2
  • 40
    • 3142768423 scopus 로고    scopus 로고
    • Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
    • Ratnawecra, A. and Halgamuge, S. 2004. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. Evolutionary Computation., 8(3): 240-255.
    • (2004) Evolutionary Computation. , vol.8 , Issue.3 , pp. 240-255
    • Ratnawecra, A.1    Halgamuge, S.2
  • 42
    • 84872396143 scopus 로고    scopus 로고
    • Faster particle swarm optimization with random inertia weight
    • Huang, X., Zhang, J. and Zhan, Z. H. 2009. Faster particle swarm optimization with random inertia weight. Computer Engineering and Design., 30(3): 647-650.
    • (2009) Computer Engineering and Design. , vol.30 , Issue.3 , pp. 647-650
    • Huang, X.1    Zhang, J.2    Zhan, Z.H.3
  • 43
    • 33645153122 scopus 로고    scopus 로고
    • Study on the strategy of decreasing inertia weight in particle swarm optimization algorithm
    • G. M. Chen, J. Y. Jia and Q. Han, Study on the strategy of decreasing inertia weight in particle swarm optimization algorithm, Journal of Xi'an Jiaotong University. 40 1 2006, 53-56.
    • (2006) Journal of Xi'an Jiaotong University , vol.40 , Issue.1 , pp. 53-56
    • Chen, G.M.1    Jia, J.Y.2    Han, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.