메뉴 건너뛰기




Volumn 22, Issue 2, 2013, Pages 739-751

High-order local spatial context modeling by spatialized random forest

Author keywords

Object classification; random forest; spatial context; visual codebook

Indexed keywords

CAPABILITY TEST; CO-OCCURRENCE; CODEBOOKS; DISCRIMINATING POWER; HIGH-ORDER; NEIGHBOR SELECTION; OBJECT CLASSIFICATION; RANDOM FORESTS; RANDOM PARTITIONS; SECOND ORDERS; SPATIAL CONTEXT; SPATIAL PATTERNS; STATE-OF-THE-ART APPROACH; TREE CONSTRUCTION; TREE NODES;

EID: 84872360046     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2012.2222895     Document Type: Article
Times cited : (14)

References (46)
  • 2
    • 51949089418 scopus 로고    scopus 로고
    • One step beyond histogram: Image representation using Markov stationary features
    • J. Li, W. Wu, T. Wang, and Y. Zhang, "One step beyond histogram: Image representation using Markov stationary features," in Proc. Conf. Comput. Vis. Pattern Recognit., 2008, pp. 1-8.
    • (2008) Proc. Conf. Comput. Vis. Pattern Recognit , pp. 1-8
    • Li, J.1    Wu, W.2    Wang, T.3    Zhang, Y.4
  • 3
    • 51949083215 scopus 로고    scopus 로고
    • Integrated feature selection and higher-order spatial feature extraction for object categorization
    • D. Liu, G. Hua, P. A. Viola, and T. Chen, "Integrated feature selection and higher-order spatial feature extraction for object categorization," in Proc. Conf. Comput. Vis. Pattern Recognit., 2008, pp. 1-8.
    • (2008) Proc. Conf. Comput. Vis. Pattern Recognit , pp. 1-8
    • Liu, D.1    Hua, G.2    Viola, P.A.3    Chen, T.4
  • 4
    • 78149341020 scopus 로고    scopus 로고
    • Building compact local pairwise codebook with joint feature space clustering
    • N. Morioka and S. Satoh, "Building compact local pairwise codebook with joint feature space clustering," in Proc. Eur. Conf. Comput. Vis., 2010, pp. 692-705.
    • (2010) Proc. Eur. Conf. Comput. Vis , pp. 692-705
    • Morioka, N.1    Satoh, S.2
  • 6
    • 84863038460 scopus 로고    scopus 로고
    • Spatial pyramid co-occurrence for image classification
    • Y. Yang and S. Newsam, "Spatial pyramid co-occurrence for image classification," in Proc. Int. Conf. Comput. Vis., 2011, pp. 1-8.
    • (2011) Proc. Int. Conf. Comput. Vis , pp. 1-8
    • Yang, Y.1    Newsam, S.2
  • 9
    • 80052897321 scopus 로고    scopus 로고
    • Mining discriminative co-occurrence patterns for visual recognition
    • J. Yuan, M. Yang, and Y. Wu, "Mining discriminative co-occurrence patterns for visual recognition," in Proc. Conf. Comput. Vis. Pattern Recognit., 2011, pp. 2777-2784.
    • (2011) Proc. Conf. Comput. Vis. Pattern Recognit , pp. 2777-2784
    • Yuan, J.1    Yang, M.2    Wu, Y.3
  • 10
    • 51949101472 scopus 로고    scopus 로고
    • Similarity-based cross-layered hierarchical representation for object categorization
    • S. Fidler, M. Boben, and A. Leonardis, "Similarity-based cross-layered hierarchical representation for object categorization," in Proc. Conf. Comput. Vis. Pattern Recognit., 2008, pp. 1-8.
    • (2008) Proc. Conf. Comput. Vis. Pattern Recognit , pp. 1-8
    • Fidler, S.1    Boben, M.2    Leonardis, A.3
  • 11
    • 0032041494 scopus 로고    scopus 로고
    • Noisy texture classification: A higher-order statistics approach
    • PII S0031320397000551
    • V. Murino, C. Ottonello, and S. Pagnan, "Noisy texture classification: A higher-order statistics approach," Pattern Recognit., vol. 31, no. 4, pp. 383-393, 1998. (Pubitemid 128402118)
    • (1998) Pattern Recognition , vol.31 , Issue.4 , pp. 383-393
    • Murino, V.1    Ottonello, C.2    Pagnan, S.3
  • 13
    • 58149151266 scopus 로고    scopus 로고
    • TextonBoost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context
    • J. Shotton, J. Winn, C. Rother, and A. Criminisi, "TextonBoost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context," Int. J. Comput. Vis., vol. 81, no. 1, pp. 2-23, 2009.
    • (2009) Int. J. Comput. Vis , vol.81 , Issue.1 , pp. 2-23
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 15
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • L. Breiman, "Random forests," Mach. Learn. J., vol. 45, no. 1, pp. 5-32, 2004. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 17
    • 84864059224 scopus 로고    scopus 로고
    • Fast discriminative visual codebooks using randomized clustering forests
    • Cambridge, MA: MIT Press
    • F. Moosmann and B. Triggs, "Fast discriminative visual codebooks using randomized clustering forests," in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2007.
    • (2007) Advances in Neural Information Processing Systems
    • Moosmann, F.1    Triggs, B.2
  • 18
    • 34948866276 scopus 로고    scopus 로고
    • Learning visual similarity measures for comparing never seen objects
    • E. Nowak and F. Jurie, "Learning visual similarity measures for comparing never seen objects," in Proc. Conf. Comput. Vis. Pattern Recognit., 2007, pp. 1-8.
    • (2007) Proc. Conf. Comput. Vis. Pattern Recognit , pp. 1-8
    • Nowak, E.1    Jurie, F.2
  • 21
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004.
    • (2004) Int. J. Comput. Vis , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 23
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • DOI 10.1109/TPAMI.2002.1017623
    • T. Ojala, M. Pietikainen, and T. Maenpaa, "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971-987, Jul. 2002. (Pubitemid 34835471)
    • (2002) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.24 , Issue.7 , pp. 971-987
    • Ojala, T.1    Pietikainen, M.2    Maenpaa, T.3
  • 24
    • 76849093371 scopus 로고    scopus 로고
    • Local derivative pattern versus local binary pattern: Face recognition with high-order local pattern descriptor
    • Feb.
    • B. Zhang, Y. Gao, S. Zhao, and J. Liu, "Local derivative pattern versus local binary pattern: Face recognition with high-order local pattern descriptor," IEEE Trans. Image Process., vol. 19, no. 2, pp. 533-544, Feb. 2010.
    • (2010) IEEE Trans. Image Process , vol.19 , Issue.2 , pp. 533-544
    • Zhang, B.1    Gao, Y.2    Zhao, S.3    Liu, J.4
  • 25
    • 34948876367 scopus 로고    scopus 로고
    • Discovery of collocation patterns: From visual words to visual phrases
    • J. Yuan, Y. Wu, and M. Yang, "Discovery of collocation patterns: From visual words to visual phrases," in Proc. Conf. Comput. Vis. Pattern Recognit., 2007, pp. 1-8.
    • (2007) Proc. Conf. Comput. Vis. Pattern Recognit , pp. 1-8
    • Yuan, J.1    Wu, Y.2    Yang, M.3
  • 27
    • 85081781136 scopus 로고    scopus 로고
    • Detection of neuron membranes in electron microscopy images using multi-scale context and radon-like features
    • M. Seyedhosseini, R. Kumar, E. Jurrus, R. Giuly, M. Ellisman, H. Pfister, and T. Tasdizen, "Detection of neuron membranes in electron microscopy images using multi-scale context and radon-like features," in Proc. MICCAI, 2011, pp. 1-8.
    • (2011) Proc. MICCAI , pp. 1-8
    • Seyedhosseini, M.1    Kumar, R.2    Jurrus, E.3    Giuly, R.4    Ellisman, M.5    Pfister, H.6    Tasdizen, T.7
  • 28
    • 33745155436 scopus 로고    scopus 로고
    • A Bayesian hierarchical model for learning natural scene categories
    • L. Fei-Fei and P. Perona, "A Bayesian hierarchical model for learning natural scene categories," in Proc. Conf. Comput. Vis. Pattern Recognit., vol. 2. 2005, pp. 524-531.
    • (2005) Proc. Conf. Comput. Vis. Pattern Recognit , vol.2 , pp. 524-531
    • Fei-Fei, L.1    Perona, P.2
  • 30
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • R. F. L. Fei-Fei and P. Perona, "Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories," in Proc. Conf. Comput. Vis. Pattern Recognit., 2004, pp. 1-9.
    • (2004) Proc. Conf. Comput. Vis. Pattern Recognit , pp. 1-9
    • Fei-Fei, R.F.L.1    Perona, P.2
  • 34
    • 33646430006 scopus 로고    scopus 로고
    • Extremely randomized trees
    • P. Geurts, D. Ernst, and L. Wehenkel, "Extremely randomized trees," Mach. Learn. J., vol. 63, no. 1, pp. 3-42, 2006.
    • (2006) Mach. Learn. J , vol.63 , Issue.1 , pp. 3-42
    • Geurts, P.1    Ernst, D.2    Wehenkel, L.3
  • 35
    • 0347380229 scopus 로고    scopus 로고
    • The CMU pose, illumination, and expression database
    • Dec
    • T. Sim, S. Baker, and M. Bsat, "The CMU pose, illumination, and expression database," IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 12, pp. 1615-1618, Dec. 2003.
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell , vol.25 , Issue.12 , pp. 1615-1618
    • Sim, T.1    Baker, S.2    Bsat, M.3
  • 37
    • 51849117118 scopus 로고    scopus 로고
    • Labeled faces in the wild: A database for studying face recognition in unconstrained environments
    • Univ. Massachusetts, Amherst, Tech. Rep 07-49 Oct
    • G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, "Labeled faces in the wild: A database for studying face recognition in unconstrained environments," Dept. Comput. Sci., Univ. Massachusetts, Amherst, Tech. Rep. 07-49, Oct. 2007.
    • (2007) Dept. Comput. Sci.
    • Huang, G.B.1    Ramesh T Berg, M.2    Learned-Miller, E.3
  • 39
    • 4544306913 scopus 로고    scopus 로고
    • Automatic 3D face recognition combining global geometric features with local shape variation information
    • C. Xu, Y. Wang, T. Tan, and L. Quan, "Automatic 3D face recognition combining global geometric features with local shape variation information," in Proc. AFGR, 2004, pp. 308-313.
    • (2004) Proc. AFGR , pp. 308-313
    • Xu, C.1    Wang, Y.2    Tan, T.3    Quan, L.4
  • 41
    • 70450172604 scopus 로고    scopus 로고
    • How far can you get with a modern face recognition test set using only simple features?
    • N. Pinto, J. J. DiCarlo, and D. D. Cox, "How far can you get with a modern face recognition test set using only simple features?" in Proc. Conf. Comput. Vis. Pattern Recognit., 2009, pp. 1-8.
    • (2009) Proc. Conf. Comput. Vis. Pattern Recognit , pp. 1-8
    • Pinto, N.1    Dicarlo, J.J.2    Cox, D.D.3
  • 43
    • 85081781684 scopus 로고    scopus 로고
    • ETH-80 Database(2003) [Online]
    • ETH-80 Database. (2003) [Online]. Available: http://www.vision. ee.ethz.ch/projects/categorization/
  • 44
    • 34948904828 scopus 로고    scopus 로고
    • Caltech-256 object category dataset
    • California Inst. Technology, Pasadena, Tech. Rep. CNS-TR-2007-001
    • G. Griffin, A. Holub, and P. Perona, "Caltech-256 object category dataset," Dept. Comput. Sci., California Inst. Technology, Pasadena, Tech. Rep. CNS-TR-2007-001, 2007.
    • (2007) Dept. Comput. Sci.
    • Griffin, G.1    Holub, A.2    Perona, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.