메뉴 건너뛰기




Volumn 24, Issue 1, 2013, Pages 175-186

Aircraft classification with a low resolution infrared sensor

Author keywords

Aircraft classification; Image processing; Infrared surveillance; Shapes statistics; Stochastic approximation

Indexed keywords

ASPECT ANGLES; BACKGROUND MODEL; CLASSIFICATION PERFORMANCE; COMBAT AIRCRAFT; DEFORMABLE TEMPLATES; DETECTION PERFORMANCE; INFRA-RED SENSOR; INFRARED IMAGES; INFRARED SIGNATURE; INFRARED SURVEILLANCES; INPUT PARAMETER; LOW ALTITUDES; LOW RESOLUTION; MAXIMUM LIKELIHOOD CLASSIFICATIONS; METEOROLOGICAL CONDITION; METHODOLOGICAL APPROACH; QUASI-MONTE CARLO; STATE OF THE ART; STOCHASTIC APPROXIMATIONS; SUPPORT VECTOR CLASSIFIERS;

EID: 84872334424     PISSN: 09328092     EISSN: 14321769     Source Type: Journal    
DOI: 10.1007/s00138-012-0437-1     Document Type: Article
Times cited : (2)

References (25)
  • 2
    • 30744433385 scopus 로고    scopus 로고
    • Aircraft powerplant and plume infrared signature modelling and analysis
    • AIAA, Nevada
    • Rao, A.; Mahulikar, S.P.: Aircraft powerplant and plume infrared signature modelling and analysis. In: 43rd AIAA Aerospace Sciences Meeting and Exhibit, vol. 221. AIAA, Nevada (2005)
    • (2005) 43rd AIAA Aerospace Sciences Meeting and Exhibit , vol.221
    • Rao, A.1    Mahulikar, S.P.2
  • 3
    • 0025839390 scopus 로고
    • NIRATAM-NATO Infrared Air Target Model
    • Gowrinathan, S.; Mataloni, R.J.; Schwartz, S.J. (eds.) Surveillance Technologies
    • Noah, M.; Kristl, J.; Schroeder, J.; Sandford, B.P.: NIRATAM-NATO Infrared Air Target Model. In: Gowrinathan, S.; Mataloni, R.J.; Schwartz, S.J. (eds.) Surveillance Technologies. Proceedings of SPIE, vol. 1479, pp. 275-282 (1991)
    • (1991) Proceedings of SPIE , vol.1479 , pp. 275-282
    • Noah, M.1    Kristl, J.2    Schroeder, J.3    Sandford, B.P.4
  • 4
    • 0019708216 scopus 로고
    • Aircraft infrared radiation modeling
    • Gauffre G.: Aircraft infrared radiation modeling. Rech. Aerosp. 4, 245-265 (1981)
    • (1981) Rech. Aerosp. , vol.4 , pp. 245-265
    • Gauffre, G.1
  • 5
    • 77649187980 scopus 로고    scopus 로고
    • A methodological approach for statistical evaluation of aircraft infrared signature
    • 10.1016/j.ress.2009.12.002
    • Lefebvre S.; Roblin A.; Varet S.; Durand G.: A methodological approach for statistical evaluation of aircraft infrared signature. Reliab. Eng. Syst. Safety 95, 484-493 (2010)
    • (2010) Reliab. Eng. Syst. Safety , vol.95 , pp. 484-493
    • Lefebvre, S.1    Roblin, A.2    Varet, S.3    Durand, G.4
  • 6
    • 84861150671 scopus 로고    scopus 로고
    • Detecting aircrafts with a low resolution infrared sensor
    • 2925359 10.1109/TIP.2012.2186307
    • Jakubowicz J.; Lefebvre S.; Maire F.; Moulines E.: Detecting aircrafts with a low resolution infrared sensor. IEEE Trans. Image Process. 21, 3034-3041 (2012)
    • (2012) IEEE Trans. Image Process. , vol.21 , pp. 3034-3041
    • Jakubowicz, J.1    Lefebvre, S.2    Maire, F.3    Moulines, E.4
  • 7
    • 70350442540 scopus 로고    scopus 로고
    • Spectral-spatial analysis in hyperspectral remote sensing: From morphological profiles to classified segmentation
    • Chanussot J.; Benediktsson J.-A.; Fauvel M.; Tarabalka Y.: Spectral-spatial analysis in hyperspectral remote sensing: from morphological profiles to classified segmentation. Proc. SPIE 7477, 13 (2009)
    • (2009) Proc. SPIE , vol.7477 , pp. 13
    • Chanussot, J.1    Benediktsson, J.-A.2    Fauvel, M.3    Tarabalka, Y.4
  • 8
    • 0032636659 scopus 로고    scopus 로고
    • Support Vector Machines for hyperspectral remote sensing classification
    • 10.1117/12.339824
    • Gualtieri J.A.; Cromp R.F.: Support Vector Machines for hyperspectral remote sensing classification. Proc. SPIE 3584, 221-232 (1998)
    • (1998) Proc. SPIE , vol.3584 , pp. 221-232
    • Gualtieri, J.A.1    Cromp, R.F.2
  • 10
    • 0036891787 scopus 로고    scopus 로고
    • Variational methods for multimodal image matching
    • 10.1023/A:1020830525823
    • Chef d'Hotel C.; Hermosillo G.; Faugeras O.: Variational methods for multimodal image matching. Int. J. Comput. Vis. 50, 329-343 (2002)
    • (2002) Int. J. Comput. Vis. , vol.50 , pp. 329-343
    • Chef D'Hotel, C.1    Hermosillo, G.2    Faugeras, O.3
  • 12
    • 0035649909 scopus 로고    scopus 로고
    • A penalised likelihood approach to image warping
    • 1858399 1040.62054 10.1111/1467-9868.00295
    • Glasbey C.A.; Mardia K.V.: A penalised likelihood approach to image warping. J. R. Stat. Soc. Ser. B 63, 465-492 (2001)
    • (2001) J. R. Stat. Soc. Ser. B , vol.63 , pp. 465-492
    • Glasbey, C.A.1    Mardia, K.V.2
  • 13
  • 14
    • 36549030808 scopus 로고    scopus 로고
    • A minimum description length objective function for groupwise non-rigid image registration
    • 10.1016/j.imavis.2006.12.009
    • Marsland S.; Twining C.J.; Taylor C.J.: A minimum description length objective function for groupwise non-rigid image registration. Image Vis. Comput. 26, 333-346 (2008)
    • (2008) Image Vis. Comput. , vol.26 , pp. 333-346
    • Marsland, S.1    Twining, C.J.2    Taylor, C.J.3
  • 15
    • 84950444708 scopus 로고
    • Structural image restoration through deformable template
    • 10.1080/01621459.1991.10475053
    • Amit Y.; Grenander U.; Piccioni M.: Structural image restoration through deformable template. J. Am. Stat. Assoc. 86, 376-387 (1991)
    • (1991) J. Am. Stat. Assoc. , vol.86 , pp. 376-387
    • Amit, Y.1    Grenander, U.2    Piccioni, M.3
  • 16
    • 33745948591 scopus 로고    scopus 로고
    • LOCUS: Learning Object Classes with Unsupervised Segmentation
    • Beijing
    • Winn, J.; Jojic, N.: LOCUS: Learning Object Classes with Unsupervised Segmentation. In: Proc. IEEE Intl. Conf. on Computer Vision, Beijing (2005)
    • (2005) Proc. IEEE Intl. Conf. on Computer Vision
    • Winn, J.1    Jojic, N.2
  • 17
    • 33846207428 scopus 로고    scopus 로고
    • Toward a coherent statistical framework for dense deformable template estimation
    • 10.1111/j.1467-9868.2007.00574.x
    • Allassonnière S.; Amit Y.; Trouvé A.: Toward a coherent statistical framework for dense deformable template estimation. J. R. Stat. Soc. 69, 3-29 (2007)
    • (2007) J. R. Stat. Soc. , vol.69 , pp. 3-29
    • Allassonnière, S.1    Amit, Y.2    Trouvé, A.3
  • 18
    • 77957599284 scopus 로고    scopus 로고
    • Construction of Bayesian deformable models via a stochastic approximation algorithm: A convergence study
    • 2730643 1220.62101 10.3150/09-BEJ229
    • Allassonnière S.; Kuhn E.; Trouvé A.: Construction of Bayesian deformable models via a stochastic approximation algorithm: a convergence study. Bernoulli 16, 641-678 (2010)
    • (2010) Bernoulli , vol.16 , pp. 641-678
    • Allassonnière, S.1    Kuhn, E.2    Trouvé, A.3
  • 20
    • 0348233983 scopus 로고    scopus 로고
    • I-binomial scrambling of digital nets and sequences
    • 2040428 1073.68033 10.1016/S0885-064X(03)00035-9
    • Tezuka S.; Faure H.: I-binomial scrambling of digital nets and sequences. J. Complex. 19, 744-757 (2003)
    • (2003) J. Complex. , vol.19 , pp. 744-757
    • Tezuka, S.1    Faure, H.2
  • 22
    • 0033243858 scopus 로고    scopus 로고
    • Convergence of a stochastic approximation version of the em algorithm
    • 1701103 0932.62094 10.1214/aos/1018031103
    • Delyon B.; Lavielle M.; Moulines E.: Convergence of a stochastic approximation version of the EM algorithm. Ann. Stat. 27, 94-128 (1999)
    • (1999) Ann. Stat. , vol.27 , pp. 94-128
    • Delyon, B.1    Lavielle, M.2    Moulines, E.3
  • 25
    • 79951664600 scopus 로고    scopus 로고
    • Stochastic algorithm for Bayesian mixture effect template estimation
    • 05873002 10.1051/ps/2009001
    • Allassonnière S.; Kuhn E.: Stochastic algorithm for Bayesian mixture effect template estimation. ESAIM-PS 14, 382-408 (2010)
    • (2010) ESAIM-PS , vol.14 , pp. 382-408
    • Allassonnière, S.1    Kuhn, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.