-
1
-
-
10844268349
-
Reconstruction of small inhomogeneities from boundary measurements
-
1846. Springer-Verlag, Berlin
-
H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements, Lecture Notes in Mathematics, 1846. Springer-Verlag, Berlin, 2004.
-
(2004)
Lecture Notes in Mathematics
-
-
Ammari, H.1
Kang, H.2
-
3
-
-
0042350702
-
High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of conductivity inhomogeneities of small diameter
-
H. Ammari and H. Kang, High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of conductivity inhomogeneities of small diameter, SIAM J. Math. Anal., 34 (2003), 1152-1166.
-
(2003)
SIAM J. Math. Anal.
, vol.34
, pp. 1152-1166
-
-
Ammari, H.1
Kang, H.2
-
4
-
-
3242757541
-
Boundary layer techniques for solving the Helmholtz equation in the presence of small inhomogeneities
-
H. Ammari and H. Kang, Boundary layer techniques for solving the Helmholtz equation in the presence of small inhomogeneities, J. Math. Anal. Appl., 296: 1, (2004), 190-208.
-
(2004)
J. Math. Anal. Appl.
, vol.296
, Issue.1
, pp. 190-208
-
-
Ammari, H.1
Kang, H.2
-
5
-
-
80755182451
-
The generalized polarization tensors for resolved imaging. Part I: Shape reconstruction of a conductivity inclusion
-
H. Ammari, H. Kang, M. Lim, and H. Zribi, The generalized polarization tensors for resolved imaging. Part I: Shape reconstruction of a conductivity inclusion, Math. Comp., 81 (2012), 367-386.
-
(2012)
Math. Comp.
, vol.81
, pp. 367-386
-
-
Ammari, H.1
Kang, H.2
Lim, M.3
Zribi, H.4
-
6
-
-
84858968449
-
The generalized polarization tensors for resolved imaging. Part II: Shape and electromagnetic parameters reconstruction of an electromagnetic inclusion from multistatic measurements
-
H. Ammari, H. Kang, E. Kim, and J.-Y. Lee, The generalized polarization tensors for resolved imaging. Part II: Shape and electromagnetic parameters reconstruction of an electromagnetic inclusion from multistatic measurements, Math. Comp., 81 (2012), 839-860.
-
(2012)
Math. Comp.
, vol.81
, pp. 839-860
-
-
Ammari, H.1
Kang, H.2
Kim, E.3
Lee, J.-Y.4
-
10
-
-
84857693603
-
Inverse Born series for diffuse waves, Imaging micro structures
-
Amer. Math. Soc, Providence, RI
-
Kilgore, K., Moskow, S. and Schotland, J. C, Inverse Born series for diffuse waves, Imaging micro structures, 113-122, Contemp. Math., 494, Amer. Math. Soc, Providence, RI, (2009).
-
(2009)
Contemp. Math.
, vol.494
, pp. 113-122
-
-
Kilgore, K.1
Moskow, S.2
Schotland, J.C.3
-
11
-
-
0037637476
-
Inverse problem in optical diffusion tomography. IV. Nonlinear inversion formulas
-
Markel, V., O'Sullivan, J. and Schotland, J. C, Inverse problem in optical diffusion tomography. IV. Nonlinear inversion formulas, J. Opt. Soc. Am. A, 30, (2003), 903-912.
-
(2003)
J. Opt. Soc. Am. A
, vol.30
, pp. 903-912
-
-
Markel, V.1
O'sullivan, J.2
Schotland, J.C.3
-
12
-
-
70350645475
-
Numerical studies of the inverse born series for diffuse waves
-
Moskow, S. and Schotland, J.C., Numerical studies of the inverse born series for diffuse waves, Inverse Problems, 25 (2009) 095007-25.
-
(2009)
Inverse Problems
, vol.25
, pp. 095007-25
-
-
Moskow, S.1
Schotland, J.C.2
-
13
-
-
62649105610
-
Convergence and stability of the inverse scattering series for diffuse waves
-
Moskow, S. and Schotland, J.C., Convergence and stability of the inverse scattering series for diffuse waves, Inverse Problems, 24 (2008) 065005-21.
-
(2008)
Inverse Problems
, vol.24
, pp. 065005-21
-
-
Moskow, S.1
Schotland, J.C.2
|