메뉴 건너뛰기




Volumn 52, Issue 1, 2013, Pages 543-544

Comment on "boiling points of ternary azeotropic mixtures modeled with the use of the universal solvation equation and neural networks"

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84872156788     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie302909b     Document Type: Letter
Times cited : (2)

References (10)
  • 1
    • 84863526767 scopus 로고    scopus 로고
    • Boiling Points of Ternary Azeotropic Mixtures Modeled with the Use of the Universal Solvation Equation and Neural Networks
    • Oliferenko, A. A.; Oliferenko, P. V.; Torrecilla, J. S.; Katritzkye, A. R. Boiling Points of Ternary Azeotropic Mixtures Modeled with the Use of the Universal Solvation Equation and Neural Networks Ind. Eng. Chem. Res. 2012, 51, 9123-9128
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 9123-9128
    • Oliferenko, A.A.1    Oliferenko, P.V.2    Torrecilla, J.S.3    Katritzkye, A.R.4
  • 3
    • 50849083804 scopus 로고    scopus 로고
    • Accounts of Experiences in the Application of Artificial Neural Networks in Chemical Engineering
    • Himmelblau, D. M. Accounts of Experiences in the Application of Artificial Neural Networks in Chemical Engineering Ind. Eng. Chem. Res. 2008, 47, 5782-5796
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 5782-5796
    • Himmelblau, D.M.1
  • 4
    • 0037138659 scopus 로고    scopus 로고
    • A Fast and Efficient Algorithm for Training Radial Basis Function Neural Networks Based on a Fuzzy Partition of the Input Space
    • Sarimveis, H.; Alexandridis, A.; Tsekouras, G.; Bafas, G. A Fast and Efficient Algorithm for Training Radial Basis Function Neural Networks Based on a Fuzzy Partition of the Input Space Ind. Eng. Chem. Res. 2002, 41, 751-759
    • (2002) Ind. Eng. Chem. Res. , vol.41 , pp. 751-759
    • Sarimveis, H.1    Alexandridis, A.2    Tsekouras, G.3    Bafas, G.4
  • 5
    • 0142245649 scopus 로고    scopus 로고
    • Artificial Neural Network Investigation of the Structural Group Contribution Method for Predicting Pure Components Auto Ignition Temperature
    • Albahri, T. A.; George, R. S. Artificial Neural Network Investigation of the Structural Group Contribution Method for Predicting Pure Components Auto Ignition Temperature Ind. Eng. Chem. Res. 2003, 42, 5708-5714
    • (2003) Ind. Eng. Chem. Res. , vol.42 , pp. 5708-5714
    • Albahri, T.A.1    George, R.S.2
  • 6
    • 0033216696 scopus 로고    scopus 로고
    • Training Neural Networks for Pressure Swing Adsorption Processes
    • Narasimhan, S. Training Neural Networks for Pressure Swing Adsorption Processes Ind. Eng. Chem. Res. 1999, 38, 4449-4457
    • (1999) Ind. Eng. Chem. Res. , vol.38 , pp. 4449-4457
    • Narasimhan, S.1
  • 7
    • 0034747286 scopus 로고    scopus 로고
    • Design of a Propane Ammoxidation Catalyst Using Artificial Neural Networks and Genetic Algorithms
    • Cundari, T. R.; Deng, J.; Zhao, Y. Design of a Propane Ammoxidation Catalyst Using Artificial Neural Networks and Genetic Algorithms Ind. Eng. Chem. Res. 2001, 40, 5475-5480
    • (2001) Ind. Eng. Chem. Res. , vol.40 , pp. 5475-5480
    • Cundari, T.R.1    Deng, J.2    Zhao, Y.3
  • 8
    • 33749842089 scopus 로고    scopus 로고
    • Hybrid Artificial Neural Network-Genetic Algorithm Technique for Modeling and Optimization of Plasma Reactor
    • Istadi; Amin, N. A. S. Hybrid Artificial Neural Network-Genetic Algorithm Technique for Modeling and Optimization of Plasma Reactor Ind. Eng. Chem. Res. 2006, 45, 6655-6664
    • (2006) Ind. Eng. Chem. Res. , vol.45 , pp. 6655-6664
    • Istadi1    Amin, N.A.S.2
  • 9
    • 77952416035 scopus 로고    scopus 로고
    • Application of Artificial Neural Networks for Estimation of the Reaction Rate in Methanol Dehydration
    • Valeh-e-Sheyda, P.; Yaripou, F.; Moradi, G.; Saber, M. Application of Artificial Neural Networks for Estimation of the Reaction Rate in Methanol Dehydration Ind. Eng. Chem. Res. 2010, 49, 4620-4626
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 4620-4626
    • Valeh-E-Sheyda, P.1    Yaripou, F.2    Moradi, G.3    Saber, M.4
  • 10
    • 80052345854 scopus 로고    scopus 로고
    • Bioadsorption of Arsenic: An Artificial Neural Networks and Response Surface Methodological Approach
    • Ranjan, D.; Mishra, D.; Hasan, S. H. Bioadsorption of Arsenic: An Artificial Neural Networks and Response Surface Methodological Approach Ind. Eng. Chem. Res. 2011, 50, 9852-9863
    • (2011) Ind. Eng. Chem. Res. , vol.50 , pp. 9852-9863
    • Ranjan, D.1    Mishra, D.2    Hasan, S.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.