메뉴 건너뛰기




Volumn 24, Issue 1, 2013, Pages 1-12

Modeling 3-D spatio-temporal biogeochemical processes with a forest of 1-D statistical emulators

Author keywords

Bayesian; Emulator; Hierarchical model; Lower trophic level; Marine ecosystem; Nonlinear model

Indexed keywords

ABUNDANCE; BAYESIAN ANALYSIS; BIOGEOCHEMISTRY; COASTAL ZONE; ECOSYSTEM MODELING; HIERARCHICAL SYSTEM; MARINE ECOSYSTEM; NONLINEARITY; SPATIOTEMPORAL ANALYSIS; THREE-DIMENSIONAL MODELING; TROPHIC LEVEL; UNCERTAINTY ANALYSIS;

EID: 84872132151     PISSN: 11804009     EISSN: 1099095X     Source Type: Journal    
DOI: 10.1002/env.2187     Document Type: Article
Times cited : (32)

References (60)
  • 1
    • 33847054249 scopus 로고    scopus 로고
    • Interdecadal variation of the lower trophic ecosystem in the northern Pacific between 1948 and 2002, in a 3-D implementation of the NEMURO model
    • Aita M, Yamanaka Y, Kishi M. 2007. Interdecadal variation of the lower trophic ecosystem in the northern Pacific between 1948 and 2002, in a 3-D implementation of the NEMURO model. Ecological Modelling 202(1-2): 81-94.
    • (2007) Ecological Modelling , vol.202 , Issue.1-2 , pp. 81-94
    • Aita, M.1    Yamanaka, Y.2    Kishi, M.3
  • 3
    • 0006198702 scopus 로고    scopus 로고
    • Hierarchical Bayesian time-series models
    • Berliner L. 1996. Hierarchical Bayesian time-series models. Fundamental Theories of Physics 79: 15-22.
    • (1996) Fundamental Theories of Physics , vol.79 , pp. 15-22
    • Berliner, L.1
  • 4
    • 1642293330 scopus 로고    scopus 로고
    • Physical-statistical modeling in geophysics
    • STS 3-1-STS 3-10
    • Berliner L. 2003. Physical-statistical modeling in geophysics. Journal of Geophysical Research 108(8776): STS 3-1-STS 3-10.
    • (2003) Journal of Geophysical Research , vol.108 , Issue.8776
    • Berliner, L.1
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. 2001. Random forests. Machine Learning 45(1): 5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 8
    • 84862014908 scopus 로고    scopus 로고
    • Quantifying eddychlorophyll covariability in the coastal Gulf of Alaska
    • Brown J, Fiechter J. 2012. Quantifying eddychlorophyll covariability in the coastal Gulf of Alaska. Dynamics of Atmospheres and Oceans 5556(0): 1-21.
    • (2012) Dynamics of Atmospheres and Oceans , vol.5556 , Issue.0 , pp. 1-21
    • Brown, J.1    Fiechter, J.2
  • 9
    • 70349234435 scopus 로고    scopus 로고
    • Models for bounded systems with continuous dynamics
    • Cangelosi A, Hooten M. 2009. Models for bounded systems with continuous dynamics. Biometrics 65(3): 850-856.
    • (2009) Biometrics , vol.65 , Issue.3 , pp. 850-856
    • Cangelosi, A.1    Hooten, M.2
  • 10
    • 69249168661 scopus 로고    scopus 로고
    • Gaussian process emulation of dynamic computer codes
    • Conti S, Gosling J, Oakley J, O'Hagan A. 2009. Gaussian process emulation of dynamic computer codes. Biometrika 96(3): 663-676.
    • (2009) Biometrika , vol.96 , Issue.3 , pp. 663-676
    • Conti, S.1    Gosling, J.2    Oakley, J.3    O'Hagan, A.4
  • 11
    • 70350733506 scopus 로고    scopus 로고
    • Bayesian emulation of complex multi-output and dynamic computer models
    • Conti S, OHagan A. 2010. Bayesian emulation of complex multi-output and dynamic computer models. Journal of Statistical Planning and Inference 140(3): 640-651.
    • (2010) Journal of Statistical Planning and Inference , vol.140 , Issue.3 , pp. 640-651
    • Conti, S.1    OHagan, A.2
  • 14
    • 84950437532 scopus 로고
    • Bayesian prediction of deterministic functions, with applications to the design and analysis of computer experiments
    • Currin C, Mitchell T, Morris M, Ylvisaker D. 1991. Bayesian prediction of deterministic functions, with applications to the design and analysis of computer experiments. Journal of the American Statistical Association 86: 953-963.
    • (1991) Journal of the American Statistical Association , vol.86 , pp. 953-963
    • Currin, C.1    Mitchell, T.2    Morris, M.3    Ylvisaker, D.4
  • 15
    • 33745987359 scopus 로고    scopus 로고
    • A sequential Monte Carlo approach for marine ecological prediction
    • Dowd M. 2006. A sequential Monte Carlo approach for marine ecological prediction. Environmetrics 17(5): 435-455.
    • (2006) Environmetrics , vol.17 , Issue.5 , pp. 435-455
    • Dowd, M.1
  • 16
    • 36048972344 scopus 로고    scopus 로고
    • Bayesian statistical data assimilation for ecosystem models using Markov chain Monte Carlo
    • Dowd M. 2007. Bayesian statistical data assimilation for ecosystem models using Markov chain Monte Carlo. Journal of Marine Systems 68(3-4): 439-456.
    • (2007) Journal of Marine Systems , vol.68 , Issue.3-4 , pp. 439-456
    • Dowd, M.1
  • 17
    • 79955634438 scopus 로고    scopus 로고
    • Estimating parameters for a stochastic dynamic marine ecological system
    • Dowd M. 2011. Estimating parameters for a stochastic dynamic marine ecological system. Environmetrics 22: 501-515.
    • (2011) Environmetrics , vol.22 , pp. 501-515
    • Dowd, M.1
  • 18
    • 64249157332 scopus 로고    scopus 로고
    • Fast statistical surrogates for dynamical 3D computer models of brain tumors
    • Drignei D. 2008. Fast statistical surrogates for dynamical 3D computer models of brain tumors. Journal of Computational and Graphical Statistics 17(4): 844-859.
    • (2008) Journal of Computational and Graphical Statistics , vol.17 , Issue.4 , pp. 844-859
    • Drignei, D.1
  • 19
    • 0037099499 scopus 로고    scopus 로고
    • An ensemble Kalman filter with a 1-D marine ecosystem model
    • Eknes M, Evensen G. 2002. An ensemble Kalman filter with a 1-D marine ecosystem model. Journal of Marine Systems 36(1): 75-100.
    • (2002) Journal of Marine Systems , vol.36 , Issue.1 , pp. 75-100
    • Eknes, M.1    Evensen, G.2
  • 20
    • 84884550570 scopus 로고    scopus 로고
    • The ensemble Kalman filter: theoretical formulation and practical implementation
    • Evensen G. 2003. The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dynamics 53(4): 343-367.
    • (2003) Ocean Dynamics , vol.53 , Issue.4 , pp. 343-367
    • Evensen, G.1
  • 22
    • 84863469598 scopus 로고    scopus 로고
    • Assessing marine ecosystem model properties from ensemble calculations
    • Fiechter J. 2012. Assessing marine ecosystem model properties from ensemble calculations. Ecological Modelling 242: 164-179.
    • (2012) Ecological Modelling , vol.242 , pp. 164-179
    • Fiechter, J.1
  • 23
    • 84865400300 scopus 로고    scopus 로고
    • A data assimilative, coupled physical-biological model for the coastal Gulf of Alaska
    • Fiechter J, Broquet G, Moore A, Arango H. 2011. A data assimilative, coupled physical-biological model for the coastal Gulf of Alaska. Dynamics of Atmospheres and Oceans 51(3): 75-98.
    • (2011) Dynamics of Atmospheres and Oceans , vol.51 , Issue.3 , pp. 75-98
    • Fiechter, J.1    Broquet, G.2    Moore, A.3    Arango, H.4
  • 26
    • 0036268974 scopus 로고    scopus 로고
    • NPZ models of plankton dynamics: their construction, coupling to physics, and application
    • Franks P. 2002. NPZ models of plankton dynamics: their construction, coupling to physics, and application. Journal of Oceanography 58(2): 379-387.
    • (2002) Journal of Oceanography , vol.58 , Issue.2 , pp. 379-387
    • Franks, P.1
  • 28
    • 68749116583 scopus 로고    scopus 로고
    • Fast data assimilation using a nonlinear Kalman filter and a model surrogate: an application to the Columbia River Estuary
    • Frolov S, Baptista A, Leen T, Lu Z, vanderMerwe R. 2009. Fast data assimilation using a nonlinear Kalman filter and a model surrogate: an application to the Columbia River Estuary. Dynamics of Atmospheres and Oceans 48(1-3): 16-45.
    • (2009) Dynamics of Atmospheres and Oceans , vol.48 , Issue.1-3 , pp. 16-45
    • Frolov, S.1    Baptista, A.2    Leen, T.3    Lu, Z.4    vanderMerwe, R.5
  • 29
    • 15044352085 scopus 로고    scopus 로고
    • Model evaluation and spatial interpolation by Bayesian combination of observations with outputs from numerical models
    • Fuentes M, Raftery A. 2005. Model evaluation and spatial interpolation by Bayesian combination of observations with outputs from numerical models. Biometrics 61(1): 36-45.
    • (2005) Biometrics , vol.61 , Issue.1 , pp. 36-45
    • Fuentes, M.1    Raftery, A.2
  • 30
    • 33847075011 scopus 로고    scopus 로고
    • Comparison of seasonal characteristics in biogeochemistry among the subarctic North Pacific stations described with a NEMURO-based marine ecosystem model
    • Fujii M, Yamanaka Y, Nojiri Y, Kishi M, Chai F. 2007. Comparison of seasonal characteristics in biogeochemistry among the subarctic North Pacific stations described with a NEMURO-based marine ecosystem model. Ecological Modelling 202(1-2): 52-67.
    • (2007) Ecological Modelling , vol.202 , Issue.1-2 , pp. 52-67
    • Fujii, M.1    Yamanaka, Y.2    Nojiri, Y.3    Kishi, M.4    Chai, F.5
  • 31
    • 0030838981 scopus 로고    scopus 로고
    • A Markov chain Monte Carlo method for estimation and assimilation into models
    • Harmon R, Challenor P. 1997. A Markov chain Monte Carlo method for estimation and assimilation into models. Ecological modelling 101(1): 41-59.
    • (1997) Ecological modelling , vol.101 , Issue.1 , pp. 41-59
    • Harmon, R.1    Challenor, P.2
  • 35
    • 0034076291 scopus 로고    scopus 로고
    • The calibration and validation of SeaWIFS data
    • Hooker S, McClain C. 2000. The calibration and validation of SeaWIFS data. Progress in Oceanography 45(3-4): 427-465.
    • (2000) Progress in Oceanography , vol.45 , Issue.3-4 , pp. 427-465
    • Hooker, S.1    McClain, C.2
  • 41
    • 67649159670 scopus 로고    scopus 로고
    • The global climatology of an interannually varying air-sea flux data set
    • Large W, Yeager S. 2009. The global climatology of an interannually varying air-sea flux data set. Climate Dynamics 33(2): 341-364.
    • (2009) Climate Dynamics , vol.33 , Issue.2 , pp. 341-364
    • Large, W.1    Yeager, S.2
  • 42
    • 84867799104 scopus 로고    scopus 로고
    • Science-based parameterizations for dynamical spatio-temporal models
    • Leeds W, Wikle C. 2012. Science-based parameterizations for dynamical spatio-temporal models. WIREs Computational Statistics 4(6): 554-560.
    • (2012) WIREs Computational Statistics , vol.4 , Issue.6 , pp. 554-560
    • Leeds, W.1    Wikle, C.2
  • 43
    • 70350742523 scopus 로고    scopus 로고
    • A dynamic modelling strategy for Bayesian computer model emulation
    • Liu F, West M. 2009. A dynamic modelling strategy for Bayesian computer model emulation. Bayesian Analysis 4(2): 393-412.
    • (2009) Bayesian Analysis , vol.4 , Issue.2 , pp. 393-412
    • Liu, F.1    West, M.2
  • 44
    • 33846882597 scopus 로고    scopus 로고
    • Bayesian modelling of algal mass occurrences-using adaptive MCMC methods with a lake water quality model
    • Malve O, Laine M, Haario H, Kirkkala T, Sarvala J. 2007. Bayesian modelling of algal mass occurrences-using adaptive MCMC methods with a lake water quality model. Environmental Modelling & Software 22(7): 966-977.
    • (2007) Environmental Modelling & Software , vol.22 , Issue.7 , pp. 966-977
    • Malve, O.1    Laine, M.2    Haario, H.3    Kirkkala, T.4    Sarvala, J.5
  • 45
    • 80054756971 scopus 로고    scopus 로고
    • Sequential data assimilation in fine-resolution models using error-subspace emulators: theory and preliminary evaluation
    • Margvelashvili N, Campbell E. 2012. Sequential data assimilation in fine-resolution models using error-subspace emulators: theory and preliminary evaluation. Journal of Marine Systems 90: 13-22.
    • (2012) Journal of Marine Systems , vol.90 , pp. 13-22
    • Margvelashvili, N.1    Campbell, E.2
  • 47
    • 84859266174 scopus 로고    scopus 로고
    • Estimating time-dependent parameters for a biological ocean model using an emulator approach
    • Mattern J, Fennel K, Dowd M. 2012. Estimating time-dependent parameters for a biological ocean model using an emulator approach. Journal of Marine Systems 96-97: 32-47.
    • (2012) Journal of Marine Systems , vol.96-97 , pp. 32-47
    • Mattern, J.1    Fennel, K.2    Dowd, M.3
  • 49
    • 33745699573 scopus 로고    scopus 로고
    • Bayesian analysis of computer code outputs: a tutorial
    • O'Hagan A. 2006. Bayesian analysis of computer code outputs: a tutorial. Reliability Engineering & System Safety 91(10): 1290-1300.
    • (2006) Reliability Engineering & System Safety , vol.91 , Issue.10 , pp. 1290-1300
    • O'Hagan, A.1
  • 50
    • 0442293846 scopus 로고    scopus 로고
    • Inference for deterministic simulation models: the Bayesian melding approach
    • Poole D, Raftery A. 2000. Inference for deterministic simulation models: the Bayesian melding approach. Journal of the American Statistical Association 95(452): 1244-1255.
    • (2000) Journal of the American Statistical Association , vol.95 , Issue.452 , pp. 1244-1255
    • Poole, D.1    Raftery, A.2
  • 51
    • 64249139703 scopus 로고    scopus 로고
    • Efficient emulators for multivariate deterministic functions
    • Rougier J. 2008. Efficient emulators for multivariate deterministic functions. Journal of Computational and Graphical Statistics 17(4): 827-843.
    • (2008) Journal of Computational and Graphical Statistics , vol.17 , Issue.4 , pp. 827-843
    • Rougier, J.1
  • 52
    • 0006198703 scopus 로고    scopus 로고
    • 2012. A hierarchical spatial model for constructing wind fields from scatterometer data in the Labrador sea
    • In, Gatsonis G, Carlin B, Gelman A, West M, Kass RE, Carriquiry A, Verdinelli I (eds). Springer-Verlag: NewYork
    • Royle A, Berliner LM, Wikle CK, Milliff R. 1999. 2012. A hierarchical spatial model for constructing wind fields from scatterometer data in the Labrador sea. In Case Studies in Bayesian Statistics IV, Gatsonis G, Carlin B, Gelman A, West M, Kass RE, Carriquiry A, Verdinelli I (eds). Springer-Verlag: NewYork; 367-272.
    • (1999) Case Studies in Bayesian Statistics IV , pp. 367-272
    • Royle, A.1    Berliner, L.M.2    Wikle, C.K.3    Milliff, R.4
  • 54
    • 34249876623 scopus 로고    scopus 로고
    • Fast neural network surrogates for very high dimensional physics-based models in computational oceanography
    • vanderMerwe R, Leen T, Lu Z, Frolov S, Baptista A. 2007. Fast neural network surrogates for very high dimensional physics-based models in computational oceanography. Neural Networks 20(4): 462-478.
    • (2007) Neural Networks , vol.20 , Issue.4 , pp. 462-478
    • vanderMerwe, R.1    Leen, T.2    Lu, Z.3    Frolov, S.4    Baptista, A.5
  • 55
    • 33847081226 scopus 로고    scopus 로고
    • A comparison of two lower trophic models for the California Current system
    • Wainwright TC, Feinberg LR, Hooff RC, Peterson WT. 2007. A comparison of two lower trophic models for the California Current system. Ecological Modelling 202(1-2): 120-131.
    • (2007) Ecological Modelling , vol.202 , Issue.1-2 , pp. 120-131
    • Wainwright, T.C.1    Feinberg, L.R.2    Hooff, R.C.3    Peterson, W.T.4
  • 56
    • 77649192043 scopus 로고    scopus 로고
    • Parameter optimisation techniques and the problem of underdetermination in marine biogeochemical models
    • Ward B, Friedrichs M, Anderson T, Oschlies A. 2010. Parameter optimisation techniques and the problem of underdetermination in marine biogeochemical models. Journal of Marine Systems 81(1-2): 34-43.
    • (2010) Journal of Marine Systems , vol.81 , Issue.1-2 , pp. 34-43
    • Ward, B.1    Friedrichs, M.2    Anderson, T.3    Oschlies, A.4
  • 57
    • 0041985115 scopus 로고    scopus 로고
    • Hierarchical Bayesian models for predicting the spread of ecological processes
    • Wikle C. 2003. Hierarchical Bayesian models for predicting the spread of ecological processes. Ecology 84(6): 1382-1394.
    • (2003) Ecology , vol.84 , Issue.6 , pp. 1382-1394
    • Wikle, C.1
  • 58
    • 13444293000 scopus 로고    scopus 로고
    • Combining information across spatial scales
    • Wikle C, Berliner L. 2005. Combining information across spatial scales. Technometrics 47(1): 80-91.
    • (2005) Technometrics , vol.47 , Issue.1 , pp. 80-91
    • Wikle, C.1    Berliner, L.2
  • 59
    • 78449244115 scopus 로고    scopus 로고
    • A general science-based framework for dynamical spatio-temporal models
    • Wikle C, Hooten M. 2010. A general science-based framework for dynamical spatio-temporal models. Test 19: 1-35.
    • (2010) Test , vol.19 , pp. 1-35
    • Wikle, C.1    Hooten, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.