메뉴 건너뛰기




Volumn 69, Issue , 2013, Pages 37-45

A study of the temporal dynamics of ambient particulate matter using stochastic and chaotic techniques

Author keywords

Correlation dimension; Dynamic factor analysis; Particulate matter; System identification; Temporal dynamics

Indexed keywords

AMBIENT PARTICULATE MATTER; CD METHOD; CHAOTIC TECHNIQUES; CHEMICAL INTERACTIONS; CORRELATION DIMENSIONS; DETERMINISTIC PROCESS; DFA METHOD; DYNAMIC FACTOR ANALYSIS; ENVIRONMENTAL SYSTEMS; EXOGENOUS FACTORS; METEOROLOGICAL VARIABLES; PARTICULATE MATTER; PM10 AND PM2.5; STOCHASTIC METHODS; TEMPORAL DYNAMICS;

EID: 84872015867     PISSN: 13522310     EISSN: 18732844     Source Type: Journal    
DOI: 10.1016/j.atmosenv.2012.10.067     Document Type: Article
Times cited : (15)

References (68)
  • 1
    • 45149144372 scopus 로고
    • Nonlinear prediction of chaotic time-series
    • Casdagli M. Nonlinear prediction of chaotic time-series. Phys. D 1989, 35:335-356.
    • (1989) Phys. D , vol.35 , pp. 335-356
    • Casdagli, M.1
  • 2
    • 33847673656 scopus 로고    scopus 로고
    • Evaluation of the trend of air quality in Taipei, Taiwan from 1994 to 2003
    • Chang S.C., Lee C.T. Evaluation of the trend of air quality in Taipei, Taiwan from 1994 to 2003. Environ. Monit. Assess. 2007, 127:87-96.
    • (2007) Environ. Monit. Assess. , vol.127 , pp. 87-96
    • Chang, S.C.1    Lee, C.T.2
  • 3
    • 40749121317 scopus 로고    scopus 로고
    • Nonlinear time series analysis of ground-level ozone dynamics in Southern Taiwan
    • Chang N.B., Weng Y.C., Lee T.Y. Nonlinear time series analysis of ground-level ozone dynamics in Southern Taiwan. J. Environ. Manage. 2008, 87:405-414.
    • (2008) J. Environ. Manage. , vol.87 , pp. 405-414
    • Chang, N.B.1    Weng, Y.C.2    Lee, T.Y.3
  • 4
    • 77956973904 scopus 로고    scopus 로고
    • Nonlinear dynamical analysis of ground level ozone concentrations at different temporal scales
    • Chelani A.B. Nonlinear dynamical analysis of ground level ozone concentrations at different temporal scales. Atmos. Environ. 2010, 44:4318-4324.
    • (2010) Atmos. Environ. , vol.44 , pp. 4318-4324
    • Chelani, A.B.1
  • 5
    • 77958160208 scopus 로고    scopus 로고
    • Chemical mass balance source apportionment for combined PM(2) (5) measurements from U S non-urban and urban long-term networks
    • Chen L.W.A., Watson J.G., Chow J.C., DuBois D.W., Herschberger L. Chemical mass balance source apportionment for combined PM(2) (5) measurements from U S non-urban and urban long-term networks. Atmos. Environ. 2010, 44:4908-4918.
    • (2010) Atmos. Environ. , vol.44 , pp. 4908-4918
    • Chen, L.W.A.1    Watson, J.G.2    Chow, J.C.3    DuBois, D.W.4    Herschberger, L.5
  • 6
    • 0024474879 scopus 로고
    • Identification of Markers for chemical mass balance receptor model
    • Cheng M.D., Hopke P.K. Identification of Markers for chemical mass balance receptor model. Atmos. Environ. 1989, 23:1373-1384.
    • (1989) Atmos. Environ. , vol.23 , pp. 1373-1384
    • Cheng, M.D.1    Hopke, P.K.2
  • 7
    • 0036488968 scopus 로고    scopus 로고
    • Review of PM2.5 and PM10 apportionment for fossil fuel combustion and other sources by the chemical mass balance receptor model
    • Chow J.C., Watson J.G. Review of PM2.5 and PM10 apportionment for fossil fuel combustion and other sources by the chemical mass balance receptor model. Energy Fuel 2002, 16:222-260.
    • (2002) Energy Fuel , vol.16 , pp. 222-260
    • Chow, J.C.1    Watson, J.G.2
  • 11
    • 34548696055 scopus 로고
    • Independent coordinates for strange attractors from mutual information
    • Fraser A.M., Swinney H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 1986, 33:1134-1140.
    • (1986) Phys. Rev. A , vol.33 , pp. 1134-1140
    • Fraser, A.M.1    Swinney, H.L.2
  • 12
    • 33751019463 scopus 로고    scopus 로고
    • Determination of PM2.5 sources using time-resolved integrated source and receptor models
    • Garcia J.H., Li W.W., Cardenas N., Arimoto R., Walton J., Trujillo D. Determination of PM2.5 sources using time-resolved integrated source and receptor models. Chemosphere 2006, 65:2018-2027.
    • (2006) Chemosphere , vol.65 , pp. 2018-2027
    • Garcia, J.H.1    Li, W.W.2    Cardenas, N.3    Arimoto, R.4    Walton, J.5    Trujillo, D.6
  • 13
    • 79952215336 scopus 로고    scopus 로고
    • Detecting and forecasting complex nonlinear dynamics in spatially structured catch-per-unit-effort time series for North Pacific albacore (Thunnus alalunga)
    • Glaser S.M., Ye H., Maunder M., MacCall A., Fogarty M., Sugihara G. Detecting and forecasting complex nonlinear dynamics in spatially structured catch-per-unit-effort time series for North Pacific albacore (Thunnus alalunga). Can. J. Fish. Aquat. Sci. 2011, 68:400-412.
    • (2011) Can. J. Fish. Aquat. Sci. , vol.68 , pp. 400-412
    • Glaser, S.M.1    Ye, H.2    Maunder, M.3    MacCall, A.4    Fogarty, M.5    Sugihara, G.6
  • 15
    • 33646981873 scopus 로고
    • Characterization of strange attractors
    • Grassberger P., Procaccia I. Characterization of strange attractors. Phys. Rev. Lett. 1983, 50:346-349.
    • (1983) Phys. Rev. Lett. , vol.50 , pp. 346-349
    • Grassberger, P.1    Procaccia, I.2
  • 16
    • 79959969857 scopus 로고    scopus 로고
    • Source apportionment of volatile organic compounds in Hong Kong homes
    • Guo H. Source apportionment of volatile organic compounds in Hong Kong homes. Build Environ. 2011, 46:2280-2286.
    • (2011) Build Environ. , vol.46 , pp. 2280-2286
    • Guo, H.1
  • 18
    • 75249106183 scopus 로고    scopus 로고
    • The use of real-time monitoring data to evaluate major sources of airborne particulate matter
    • Hellebust S., Allanic A., O'Connor I.P., Wenger J.C., Sodeau J.R. The use of real-time monitoring data to evaluate major sources of airborne particulate matter. Atmos. Environ. 2010, 44:1116-1125.
    • (2010) Atmos. Environ. , vol.44 , pp. 1116-1125
    • Hellebust, S.1    Allanic, A.2    O'Connor, I.P.3    Wenger, J.C.4    Sodeau, J.R.5
  • 19
    • 36348974676 scopus 로고    scopus 로고
    • Is correlation dimension a reliable proxy for the number of dominant influencing variables for modeling risk of arsenic contamination in groundwater?
    • Hill J., Hossain F., Sivakumar B. Is correlation dimension a reliable proxy for the number of dominant influencing variables for modeling risk of arsenic contamination in groundwater?. Stoch. Environ. Res. Risk Assess. 2008, 22:47-55.
    • (2008) Stoch. Environ. Res. Risk Assess. , vol.22 , pp. 47-55
    • Hill, J.1    Hossain, F.2    Sivakumar, B.3
  • 21
    • 0038685051 scopus 로고    scopus 로고
    • Recent developments in receptor modeling
    • Hopke P.K. Recent developments in receptor modeling. J. Chemometr. 2003, 17:255-265.
    • (2003) J. Chemometr. , vol.17 , pp. 255-265
    • Hopke, P.K.1
  • 22
    • 0034854948 scopus 로고    scopus 로고
    • Sources of fine particle composition in the northeastern US
    • Hopke P.K., Song X.H., Polissar A.V. Sources of fine particle composition in the northeastern US. Atmos. Environ. 2001, 35:5277-5286.
    • (2001) Atmos. Environ. , vol.35 , pp. 5277-5286
    • Hopke, P.K.1    Song, X.H.2    Polissar, A.V.3
  • 23
    • 30344458526 scopus 로고    scopus 로고
    • Spatial pattern of arsenic contamination in shallow wells of Bangladesh: regional geology and nonlinear dynamics
    • Hossain F., Sivakumar B. Spatial pattern of arsenic contamination in shallow wells of Bangladesh: regional geology and nonlinear dynamics. Stoch. Environ. Res. Risk Assess. 2006, 20:66-76.
    • (2006) Stoch. Environ. Res. Risk Assess. , vol.20 , pp. 66-76
    • Hossain, F.1    Sivakumar, B.2
  • 24
    • 38349129454 scopus 로고    scopus 로고
    • Extending Nonlinear analysis to short ecological time series
    • Hsieh C.H., Anderson C., Sugihara G. Extending Nonlinear analysis to short ecological time series. Am. Nat. 2008, 171:71-80.
    • (2008) Am. Nat. , vol.171 , pp. 71-80
    • Hsieh, C.H.1    Anderson, C.2    Sugihara, G.3
  • 25
    • 0033575035 scopus 로고    scopus 로고
    • Testing and optimizing two factor-analysis techniques on aerosol at Narragansett, Rhode Island
    • Huang S.L., Rahn K.A., Arimoto R. Testing and optimizing two factor-analysis techniques on aerosol at Narragansett, Rhode Island. Atmos. Environ. 1999, 33:2169-2185.
    • (1999) Atmos. Environ. , vol.33 , pp. 2169-2185
    • Huang, S.L.1    Rahn, K.A.2    Arimoto, R.3
  • 26
    • 0032102851 scopus 로고    scopus 로고
    • Nonlinear dynamics of hourly ozone concentrations: nonparametric short term prediction
    • Islam S., Chen J.L., Biswas P. Nonlinear dynamics of hourly ozone concentrations: nonparametric short term prediction. Atmos. Environ. 1998, 32:1839-1848.
    • (1998) Atmos. Environ. , vol.32 , pp. 1839-1848
    • Islam, S.1    Chen, J.L.2    Biswas, P.3
  • 27
    • 0003915006 scopus 로고    scopus 로고
    • Cambridge University Press, Cambridge, p. 1 online resource (388 pp.)
    • Kantz H., Schreiber T. Nonlinear Time Series Analysis 2003, Cambridge University Press, Cambridge, p. 1 online resource (388 pp.).
    • (2003) Nonlinear Time Series Analysis
    • Kantz, H.1    Schreiber, T.2
  • 28
    • 35949006791 scopus 로고
    • Determining embedding dimension for phase-space reconstruction using a geometrical construction
    • Kennel M.B., Brown R., Abarbanel H.D.I. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 1992, 45:3403-3411.
    • (1992) Phys. Rev. A , vol.45 , pp. 3403-3411
    • Kennel, M.B.1    Brown, R.2    Abarbanel, H.D.I.3
  • 29
    • 80054712270 scopus 로고    scopus 로고
    • Investigating: common trends of annual maximum rainfalls during heavy rainfall events in southern Taiwan
    • Kuo Y.M., Chu H.J., Pan T.Y., Yu H.L. Investigating: common trends of annual maximum rainfalls during heavy rainfall events in southern Taiwan. J. Hydrol. 2011, 409:749-758.
    • (2011) J. Hydrol. , vol.409 , pp. 749-758
    • Kuo, Y.M.1    Chu, H.J.2    Pan, T.Y.3    Yu, H.L.4
  • 30
    • 80755153594 scopus 로고    scopus 로고
    • Identifying the factors influencing PM2.5 in southern Taiwan using dynamic factor analysis
    • Kuo Y.M., Wang S.W., Jang C.S., Yeh N., Yu H.L. Identifying the factors influencing PM2.5 in southern Taiwan using dynamic factor analysis. Atmos. Environ. 2011, 45:7276-7285.
    • (2011) Atmos. Environ. , vol.45 , pp. 7276-7285
    • Kuo, Y.M.1    Wang, S.W.2    Jang, C.S.3    Yeh, N.4    Yu, H.L.5
  • 31
    • 0033677395 scopus 로고    scopus 로고
    • Association of fine particulate matter from different sources with daily mortality in six US cities
    • Laden F., Neas L.M., Dockery D.W., Schwartz J. Association of fine particulate matter from different sources with daily mortality in six US cities. Environ. Health Perspect. 2000, 108:941-947.
    • (2000) Environ. Health Perspect. , vol.108 , pp. 941-947
    • Laden, F.1    Neas, L.M.2    Dockery, D.W.3    Schwartz, J.4
  • 32
    • 33748801520 scopus 로고    scopus 로고
    • Identifying and quantifying transported vs. local sources of New York City PM2.5 fine particulate matter air pollution
    • Lall R., Thurston G.D. Identifying and quantifying transported vs. local sources of New York City PM2.5 fine particulate matter air pollution. Atmos. Environ. 2006, 40:S333-S346.
    • (2006) Atmos. Environ. , vol.40
    • Lall, R.1    Thurston, G.D.2
  • 33
    • 57849086548 scopus 로고    scopus 로고
    • Chaos in air pollutant concentration (APC) time series
    • Lee C.K., Lin S.C. Chaos in air pollutant concentration (APC) time series. Aerosol Air Qual. Res. 2008, 8:381-391.
    • (2008) Aerosol Air Qual. Res. , vol.8 , pp. 381-391
    • Lee, C.K.1    Lin, S.C.2
  • 34
    • 30244464950 scopus 로고
    • Proper choice of the time-delay for the analysis of chaotic time-series
    • Liebert W., Schuster H.G. Proper choice of the time-delay for the analysis of chaotic time-series. Phys. Lett. A 1989, 142:107-111.
    • (1989) Phys. Lett. A , vol.142 , pp. 107-111
    • Liebert, W.1    Schuster, H.G.2
  • 35
    • 0000241853 scopus 로고
    • Deterministic nonperiodic flow
    • Lorenz E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20:130-141.
    • (1963) J. Atmos. Sci. , vol.20 , pp. 130-141
    • Lorenz, E.N.1
  • 37
    • 0000312259 scopus 로고
    • A dynamic factor model for the analysis of multivariate time-series
    • Molenaar P.C.M. A dynamic factor model for the analysis of multivariate time-series. Psychometrika 1985, 50:181-202.
    • (1985) Psychometrika , vol.50 , pp. 181-202
    • Molenaar, P.C.M.1
  • 38
    • 21144464195 scopus 로고
    • Dynamic factor-analysis of nonstationary multivariate time-series
    • Molenaar P.C.M., Degooijer J.G., Schmitz B. Dynamic factor-analysis of nonstationary multivariate time-series. Psychometrika 1992, 57:333-349.
    • (1992) Psychometrika , vol.57 , pp. 333-349
    • Molenaar, P.C.M.1    Degooijer, J.G.2    Schmitz, B.3
  • 39
    • 26644469071 scopus 로고    scopus 로고
    • Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park
    • Muñoz-Carpena R., Ritter A., Li Y.C. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park. J. Contamin. Hydrol. 2005, 80:49-70.
    • (2005) J. Contamin. Hydrol. , vol.80 , pp. 49-70
    • Muñoz-Carpena, R.1    Ritter, A.2    Li, Y.C.3
  • 40
    • 0033786820 scopus 로고    scopus 로고
    • Coarse and fine particles and daily mortality in the Coachella Valley, California: a follow-up study
    • Ostro B.D., Broadwin R., Lipsett M.J. Coarse and fine particles and daily mortality in the Coachella Valley, California: a follow-up study. J. Expo. Anal. Environ. Epidemiol. 2000, 10:412-419.
    • (2000) J. Expo. Anal. Environ. Epidemiol. , vol.10 , pp. 412-419
    • Ostro, B.D.1    Broadwin, R.2    Lipsett, M.J.3
  • 42
    • 0028561099 scopus 로고
    • Positive matrix factorization - a nonnegative factor model with optimal utilization of error-estimates of data values
    • Paatero P., Tapper U. Positive matrix factorization - a nonnegative factor model with optimal utilization of error-estimates of data values. Environmetrics 1994, 5:111-126.
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 45
    • 0030303191 scopus 로고    scopus 로고
    • On the nature of air pollution dynamics in Mexico City. 1. Nonlinear analysis
    • Raga G.B., LeMoyne L. On the nature of air pollution dynamics in Mexico City. 1. Nonlinear analysis. Atmos. Environ. 1996, 30:3987-3993.
    • (1996) Atmos. Environ. , vol.30 , pp. 3987-3993
    • Raga, G.B.1    LeMoyne, L.2
  • 46
    • 28844465850 scopus 로고    scopus 로고
    • Dynamic factor modeling of ground and surface water levels in an agricultural area adjacent to Everglades National Park
    • Ritter A., Muñoz-Carpena R. Dynamic factor modeling of ground and surface water levels in an agricultural area adjacent to Everglades National Park. J. Hydrol. 2006, 317:340-354.
    • (2006) J. Hydrol. , vol.317 , pp. 340-354
    • Ritter, A.1    Muñoz-Carpena, R.2
  • 47
    • 0033987240 scopus 로고    scopus 로고
    • Fine particles are more strongly associated than coarse particles with acute respiratory health effects in schoolchildren
    • Schwartz J., Neas L.M. Fine particles are more strongly associated than coarse particles with acute respiratory health effects in schoolchildren. Epidemiology 2000, 11:6-10.
    • (2000) Epidemiology , vol.11 , pp. 6-10
    • Schwartz, J.1    Neas, L.M.2
  • 50
    • 84986753417 scopus 로고
    • An approach to time series smoothing and forecasting using the EM algorithm
    • Shumway R.H., Stoffer D.S. An approach to time series smoothing and forecasting using the EM algorithm. J. Time Ser. Anal. 1982, 3:253-264.
    • (1982) J. Time Ser. Anal. , vol.3 , pp. 253-264
    • Shumway, R.H.1    Stoffer, D.S.2
  • 51
    • 0034737012 scopus 로고    scopus 로고
    • Chaos theory in hydrology: important issues and interpretations
    • Sivakumar B. Chaos theory in hydrology: important issues and interpretations. J. Hydrol. 2000, 227:1-20.
    • (2000) J. Hydrol. , vol.227 , pp. 1-20
    • Sivakumar, B.1
  • 52
    • 0042592966 scopus 로고    scopus 로고
    • Chaos theory in geophysics: past, present and future
    • Sivakumar B. Chaos theory in geophysics: past, present and future. Chaos Solitons Fractals 2004, 19(2):441-462.
    • (2004) Chaos Solitons Fractals , vol.19 , Issue.2 , pp. 441-462
    • Sivakumar, B.1
  • 53
    • 23044504450 scopus 로고    scopus 로고
    • Correlation dimension estimation of hydrological series and data size requirement: myth and reality
    • Sivakumar B. Correlation dimension estimation of hydrological series and data size requirement: myth and reality. Hydrol. Sci. J. 2005, 50:591-603.
    • (2005) Hydrol. Sci. J. , vol.50 , pp. 591-603
    • Sivakumar, B.1
  • 55
    • 35248857862 scopus 로고    scopus 로고
    • Hydrologic complexity and classification: a simple data reconstruction approach
    • Sivakumar B., Jayawardena A.W., Li W.K. Hydrologic complexity and classification: a simple data reconstruction approach. Hydrol. Process 2007, 21:2713-2728.
    • (2007) Hydrol. Process , vol.21 , pp. 2713-2728
    • Sivakumar, B.1    Jayawardena, A.W.2    Li, W.K.3
  • 56
    • 0034854948 scopus 로고    scopus 로고
    • Sources of fine particle composition in the northeastern US
    • Song X.H., Polissar A.V., Hopke P.K. Sources of fine particle composition in the northeastern US. Atmos. Environ. 2001, 35:5277-5286.
    • (2001) Atmos. Environ. , vol.35 , pp. 5277-5286
    • Song, X.H.1    Polissar, A.V.2    Hopke, P.K.3
  • 57
    • 34248190731 scopus 로고    scopus 로고
    • Seasonal trends in coarse and fine particle sources in Delhi by the chemical mass balance receptor model
    • Srivastava A., Jain V.K. Seasonal trends in coarse and fine particle sources in Delhi by the chemical mass balance receptor model. J. Hazard. Mater. 2007, 144:283-291.
    • (2007) J. Hazard. Mater. , vol.144 , pp. 283-291
    • Srivastava, A.1    Jain, V.K.2
  • 59
    • 0025199496 scopus 로고
    • Nonlinear forecasting as a way of distinguishing chaos from measurement error in time-series
    • Sugihara G., May R.M. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time-series. Nature 1990, 344:734-741.
    • (1990) Nature , vol.344 , pp. 734-741
    • Sugihara, G.1    May, R.M.2
  • 65
    • 0008494528 scopus 로고
    • Determining Lyapunov exponents from a time-series
    • Wolf A., Swift J.B., Swinney H.L., Vastano J.A. Determining Lyapunov exponents from a time-series. Phys. D 1985, 16:285-317.
    • (1985) Phys. D , vol.16 , pp. 285-317
    • Wolf, A.1    Swift, J.B.2    Swinney, H.L.3    Vastano, J.A.4
  • 66
    • 77954315093 scopus 로고    scopus 로고
    • Retrospective prediction of intraurban spatiotemporal distribution of PM2.5 in Taipei
    • Yu H.L., Wang C.H. Retrospective prediction of intraurban spatiotemporal distribution of PM2.5 in Taipei. Atmos. Environ. 2010, 44:3053-3065.
    • (2010) Atmos. Environ. , vol.44 , pp. 3053-3065
    • Yu, H.L.1    Wang, C.H.2
  • 67
    • 0142126733 scopus 로고    scopus 로고
    • Estimating common trends in multivariate time series using dynamic factor analysis
    • Zuur A.F., Fryer R.J., Jolliffe I.T., Dekker R., Beukema J.J. Estimating common trends in multivariate time series using dynamic factor analysis. Environmetrics 2003, 14:665-685.
    • (2003) Environmetrics , vol.14 , pp. 665-685
    • Zuur, A.F.1    Fryer, R.J.2    Jolliffe, I.T.3    Dekker, R.4    Beukema, J.J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.