메뉴 건너뛰기




Volumn 29, Issue 2, 2013, Pages 295-302

The rate of approximation of Gaussian radial basis neural networks in continuous function space

Author keywords

approximation; Gaussian radial basis feedforward neural networks; modulus of continuity; rate of convergence

Indexed keywords


EID: 84871947401     PISSN: 14398516     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10114-012-1369-4     Document Type: Article
Times cited : (11)

References (25)
  • 1
    • 0001683814 scopus 로고
    • Layered neural networks with Gaussian hidden units as universal approximations
    • Hartman, E. J., Keeler, J. D., Kowalski, J. M.: Layered neural networks with Gaussian hidden units as universal approximations. Neural Comput., 2, 210-215 (1990).
    • (1990) Neural Comput. , vol.2 , pp. 210-215
    • Hartman, E.J.1    Keeler, J.D.2    Kowalski, J.M.3
  • 2
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis function networks
    • Park, J., Sandberg, I. W.: Universal approximation using radial-basis function networks. Neural Comput., 3, 246-257 (1991).
    • (1991) Neural Comput. , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 3
    • 0001002401 scopus 로고
    • Approximation and radial-basis function networks
    • Park, J., Sandberg, I. W.: Approximation and radial-basis function networks. Neural Comput., 5, 305-316 (1993).
    • (1993) Neural Comput. , vol.5 , pp. 305-316
    • Park, J.1    Sandberg, I.W.2
  • 4
    • 0029341753 scopus 로고
    • Approximation capability to functions of several variables, nonlinear functionals and operators by radial basis function neural networks
    • Chen, T. P., Chen, H.: Approximation capability to functions of several variables, nonlinear functionals and operators by radial basis function neural networks. IEEE Trans. Neural Netw., 6, 904-910 (1995).
    • (1995) IEEE Trans. Neural Netw. , vol.6 , pp. 904-910
    • Chen, T.P.1    Chen, H.2
  • 6
    • 50949108086 scopus 로고    scopus 로고
    • Denseness of dilations and translations of a single function
    • Jiang, C. H., Chen, T. P.: Denseness of dilations and translations of a single function. Acta Mathematica Sinica, Chinese Series, 42, 495-500 (1999).
    • (1999) Acta Mathematica Sinica, Chinese Series , vol.42 , pp. 495-500
    • Jiang, C.H.1    Chen, T.P.2
  • 7
    • 0742290065 scopus 로고    scopus 로고
    • Relaxed conditions for radial-basis function networks to be universal approximators
    • Liao, Y., Fang, S. C., Nuttle, H. L. W.: Relaxed conditions for radial-basis function networks to be universal approximators. Neural Netw., 16, 1019-1028 (2003).
    • (2003) Neural Netw. , vol.16 , pp. 1019-1028
    • Liao, Y.1    Fang, S.C.2    Nuttle, H.L.W.3
  • 8
    • 0009621325 scopus 로고    scopus 로고
    • On simultaneous approximations by radial basis function neural networks
    • Li, X.: On simultaneous approximations by radial basis function neural networks. Appl. Math. Comput., 95, 75-89 (1998).
    • (1998) Appl. Math. Comput. , vol.95 , pp. 75-89
    • Li, X.1
  • 9
    • 0001739142 scopus 로고
    • The theory of radial basis approximation
    • W. A. Light (Ed.), Oxford: Oxford University Press
    • Powell, M. J. D.: The theory of radial basis approximation. In: Advances in Numerical Analysis (ed. W. A. Light), Vol. 2, Oxford University Press, Oxford, 1990, 105-210.
    • (1990) Advances in Numerical Analysis , pp. 105-210
    • Powell, M.J.D.1
  • 10
    • 0001991994 scopus 로고
    • Some aspects of radial basis function approximation
    • S. P. Singh (Ed.), Dordrecht: Kluwer Academic
    • Light, W. A., Wayne, H. S. J.: Some aspects of radial basis function approximation. In: Approximation Theory, Spline Functions and Applications (S. P. Singh Ed.), Kluwer Academic, Dordrecht, 1995, 163-190.
    • (1995) Approximation Theory, Spline Functions and Applications , pp. 163-190
    • Light, W.A.1    Wayne, H.S.J.2
  • 11
    • 65749310935 scopus 로고
    • Error estimates and conditions numbers for radial basis functions interpolations
    • Schaback, R.: Error estimates and conditions numbers for radial basis functions interpolations. Adv. Comput. Math., 3, 251-264 (1995).
    • (1995) Adv. Comput. Math. , vol.3 , pp. 251-264
    • Schaback, R.1
  • 12
    • 0030503790 scopus 로고    scopus 로고
    • Approximation by radial basis functions with finitely many centers
    • Schaback, R.: Approximation by radial basis functions with finitely many centers. Constr. Approx., 12, 331-340 (1996).
    • (1996) Constr. Approx. , vol.12 , pp. 331-340
    • Schaback, R.1
  • 13
    • 21844487912 scopus 로고
    • On quasi-interpolation by radial basis functions with scattered centers
    • Bumann, M., Dyn, N., Levin, D.: On quasi-interpolation by radial basis functions with scattered centers. Constr. Approx., 11, 239-254 (1995).
    • (1995) Constr. Approx. , vol.11 , pp. 239-254
    • Bumann, M.1    Dyn, N.2    Levin, D.3
  • 16
    • 12944258243 scopus 로고    scopus 로고
    • p for radial basis functions
    • p for radial basis functions. East J. Approx., 6, 87-102 (2000).
    • (2000) East J. Approx. , vol.6 , pp. 87-102
    • Wendland, H.1
  • 17
    • 0037265330 scopus 로고    scopus 로고
    • On best approximation of classes by radial functions
    • Maiorov, V. E.: On best approximation of classes by radial functions. J. Approx. Theory, 120, 36-70 (2003).
    • (2003) J. Approx. Theory , vol.120 , pp. 36-70
    • Maiorov, V.E.1
  • 18
    • 12944255725 scopus 로고    scopus 로고
    • On lower bounds in radial basis approximation
    • Maiorov, V. E.: On lower bounds in radial basis approximation. Adv. Comput. Math., 22, 103-113 (2005).
    • (2005) Adv. Comput. Math. , vol.22 , pp. 103-113
    • Maiorov, V.E.1
  • 19
    • 33745292987 scopus 로고    scopus 로고
    • Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions
    • Narcowich, F. J., Ward, J. D., Wendland, H.: Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions. Constr. Approx., 24, 175-186 (2006).
    • (2006) Constr. Approx. , vol.24 , pp. 175-186
    • Narcowich, F.J.1    Ward, J.D.2    Wendland, H.3
  • 20
    • 85095815155 scopus 로고    scopus 로고
    • Radial basis functions
    • Buhman, M.: Radial basis functions. Acta Numer., 9, 1-38 (2000).
    • (2000) Acta Numer. , vol.9 , pp. 1-38
    • Buhman, M.1
  • 21
    • 0034561156 scopus 로고    scopus 로고
    • Approximation by radial bases and neural networks
    • Li, X., Micchelli, C. A.: Approximation by radial bases and neural networks. Numer. Algorithms, 25, 241-262 (2000).
    • (2000) Numer. Algorithms , vol.25 , pp. 241-262
    • Li, X.1    Micchelli, C.A.2
  • 22
    • 56949103612 scopus 로고    scopus 로고
    • Complexity of Gaussian-radial-basis networks approximating smooth functions
    • Kainen, P. C., Kårková, V., Sanguineti, M.: Complexity of Gaussian-radial-basis networks approximating smooth functions. J. Complexity, 25, 63-74 (2009).
    • (2009) J. Complexity , vol.25 , pp. 63-74
    • Kainen, P.C.1    Kårková, V.2    Sanguineti, M.3
  • 23
    • 77951937630 scopus 로고    scopus 로고
    • Nonlinear approximation using Gaussian kernels
    • Thomas, H., Amos, R.: Nonlinear approximation using Gaussian kernels. J. Funct. Anal., 259, 203-219 (2010).
    • (2010) J. Funct. Anal. , vol.259 , pp. 203-219
    • Thomas, H.1    Amos, R.2
  • 24
    • 4143117111 scopus 로고    scopus 로고
    • When is approximation by Gaussian networks necessarily a linear process?
    • Mhaskar, H. N.: When is approximation by Gaussian networks necessarily a linear process? Neural Netw., 17, 989-1001 (2004).
    • (2004) Neural Netw. , vol.17 , pp. 989-1001
    • Mhaskar, H.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.