-
1
-
-
0001683814
-
Layered neural networks with Gaussian hidden units as universal approximations
-
Hartman, E. J., Keeler, J. D., Kowalski, J. M.: Layered neural networks with Gaussian hidden units as universal approximations. Neural Comput., 2, 210-215 (1990).
-
(1990)
Neural Comput.
, vol.2
, pp. 210-215
-
-
Hartman, E.J.1
Keeler, J.D.2
Kowalski, J.M.3
-
2
-
-
0000106040
-
Universal approximation using radial-basis function networks
-
Park, J., Sandberg, I. W.: Universal approximation using radial-basis function networks. Neural Comput., 3, 246-257 (1991).
-
(1991)
Neural Comput.
, vol.3
, pp. 246-257
-
-
Park, J.1
Sandberg, I.W.2
-
3
-
-
0001002401
-
Approximation and radial-basis function networks
-
Park, J., Sandberg, I. W.: Approximation and radial-basis function networks. Neural Comput., 5, 305-316 (1993).
-
(1993)
Neural Comput.
, vol.5
, pp. 305-316
-
-
Park, J.1
Sandberg, I.W.2
-
4
-
-
0029341753
-
Approximation capability to functions of several variables, nonlinear functionals and operators by radial basis function neural networks
-
Chen, T. P., Chen, H.: Approximation capability to functions of several variables, nonlinear functionals and operators by radial basis function neural networks. IEEE Trans. Neural Netw., 6, 904-910 (1995).
-
(1995)
IEEE Trans. Neural Netw.
, vol.6
, pp. 904-910
-
-
Chen, T.P.1
Chen, H.2
-
6
-
-
50949108086
-
Denseness of dilations and translations of a single function
-
Jiang, C. H., Chen, T. P.: Denseness of dilations and translations of a single function. Acta Mathematica Sinica, Chinese Series, 42, 495-500 (1999).
-
(1999)
Acta Mathematica Sinica, Chinese Series
, vol.42
, pp. 495-500
-
-
Jiang, C.H.1
Chen, T.P.2
-
7
-
-
0742290065
-
Relaxed conditions for radial-basis function networks to be universal approximators
-
Liao, Y., Fang, S. C., Nuttle, H. L. W.: Relaxed conditions for radial-basis function networks to be universal approximators. Neural Netw., 16, 1019-1028 (2003).
-
(2003)
Neural Netw.
, vol.16
, pp. 1019-1028
-
-
Liao, Y.1
Fang, S.C.2
Nuttle, H.L.W.3
-
8
-
-
0009621325
-
On simultaneous approximations by radial basis function neural networks
-
Li, X.: On simultaneous approximations by radial basis function neural networks. Appl. Math. Comput., 95, 75-89 (1998).
-
(1998)
Appl. Math. Comput.
, vol.95
, pp. 75-89
-
-
Li, X.1
-
9
-
-
0001739142
-
The theory of radial basis approximation
-
W. A. Light (Ed.), Oxford: Oxford University Press
-
Powell, M. J. D.: The theory of radial basis approximation. In: Advances in Numerical Analysis (ed. W. A. Light), Vol. 2, Oxford University Press, Oxford, 1990, 105-210.
-
(1990)
Advances in Numerical Analysis
, pp. 105-210
-
-
Powell, M.J.D.1
-
10
-
-
0001991994
-
Some aspects of radial basis function approximation
-
S. P. Singh (Ed.), Dordrecht: Kluwer Academic
-
Light, W. A., Wayne, H. S. J.: Some aspects of radial basis function approximation. In: Approximation Theory, Spline Functions and Applications (S. P. Singh Ed.), Kluwer Academic, Dordrecht, 1995, 163-190.
-
(1995)
Approximation Theory, Spline Functions and Applications
, pp. 163-190
-
-
Light, W.A.1
Wayne, H.S.J.2
-
11
-
-
65749310935
-
Error estimates and conditions numbers for radial basis functions interpolations
-
Schaback, R.: Error estimates and conditions numbers for radial basis functions interpolations. Adv. Comput. Math., 3, 251-264 (1995).
-
(1995)
Adv. Comput. Math.
, vol.3
, pp. 251-264
-
-
Schaback, R.1
-
12
-
-
0030503790
-
Approximation by radial basis functions with finitely many centers
-
Schaback, R.: Approximation by radial basis functions with finitely many centers. Constr. Approx., 12, 331-340 (1996).
-
(1996)
Constr. Approx.
, vol.12
, pp. 331-340
-
-
Schaback, R.1
-
13
-
-
21844487912
-
On quasi-interpolation by radial basis functions with scattered centers
-
Bumann, M., Dyn, N., Levin, D.: On quasi-interpolation by radial basis functions with scattered centers. Constr. Approx., 11, 239-254 (1995).
-
(1995)
Constr. Approx.
, vol.11
, pp. 239-254
-
-
Bumann, M.1
Dyn, N.2
Levin, D.3
-
16
-
-
12944258243
-
p for radial basis functions
-
p for radial basis functions. East J. Approx., 6, 87-102 (2000).
-
(2000)
East J. Approx.
, vol.6
, pp. 87-102
-
-
Wendland, H.1
-
17
-
-
0037265330
-
On best approximation of classes by radial functions
-
Maiorov, V. E.: On best approximation of classes by radial functions. J. Approx. Theory, 120, 36-70 (2003).
-
(2003)
J. Approx. Theory
, vol.120
, pp. 36-70
-
-
Maiorov, V.E.1
-
18
-
-
12944255725
-
On lower bounds in radial basis approximation
-
Maiorov, V. E.: On lower bounds in radial basis approximation. Adv. Comput. Math., 22, 103-113 (2005).
-
(2005)
Adv. Comput. Math.
, vol.22
, pp. 103-113
-
-
Maiorov, V.E.1
-
19
-
-
33745292987
-
Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions
-
Narcowich, F. J., Ward, J. D., Wendland, H.: Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions. Constr. Approx., 24, 175-186 (2006).
-
(2006)
Constr. Approx.
, vol.24
, pp. 175-186
-
-
Narcowich, F.J.1
Ward, J.D.2
Wendland, H.3
-
20
-
-
85095815155
-
Radial basis functions
-
Buhman, M.: Radial basis functions. Acta Numer., 9, 1-38 (2000).
-
(2000)
Acta Numer.
, vol.9
, pp. 1-38
-
-
Buhman, M.1
-
21
-
-
0034561156
-
Approximation by radial bases and neural networks
-
Li, X., Micchelli, C. A.: Approximation by radial bases and neural networks. Numer. Algorithms, 25, 241-262 (2000).
-
(2000)
Numer. Algorithms
, vol.25
, pp. 241-262
-
-
Li, X.1
Micchelli, C.A.2
-
22
-
-
56949103612
-
Complexity of Gaussian-radial-basis networks approximating smooth functions
-
Kainen, P. C., Kårková, V., Sanguineti, M.: Complexity of Gaussian-radial-basis networks approximating smooth functions. J. Complexity, 25, 63-74 (2009).
-
(2009)
J. Complexity
, vol.25
, pp. 63-74
-
-
Kainen, P.C.1
Kårková, V.2
Sanguineti, M.3
-
23
-
-
77951937630
-
Nonlinear approximation using Gaussian kernels
-
Thomas, H., Amos, R.: Nonlinear approximation using Gaussian kernels. J. Funct. Anal., 259, 203-219 (2010).
-
(2010)
J. Funct. Anal.
, vol.259
, pp. 203-219
-
-
Thomas, H.1
Amos, R.2
-
24
-
-
4143117111
-
When is approximation by Gaussian networks necessarily a linear process?
-
Mhaskar, H. N.: When is approximation by Gaussian networks necessarily a linear process? Neural Netw., 17, 989-1001 (2004).
-
(2004)
Neural Netw.
, vol.17
, pp. 989-1001
-
-
Mhaskar, H.N.1
-
25
-
-
0004227421
-
-
SSCM, New York: Springer-Verlag
-
Ditzian, Z., Totik, V.: Moduli of Smothness, SSCM 9, Springer-Verlag, New York, 1987.
-
(1987)
Moduli of Smothness
, vol.9
-
-
Ditzian, Z.1
Totik, V.2
|