메뉴 건너뛰기




Volumn 111, Issue 1-2, 2013, Pages 297-307

Least squares support vector machine for short-term prediction of meteorological time series

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; COMPARATIVE STUDY; LEAST SQUARES METHOD; MODEL TEST; MODEL VALIDATION; PREDICTION; TIME SERIES ANALYSIS; VECTOR; WEATHER FORECASTING;

EID: 84871934974     PISSN: 0177798X     EISSN: 14344483     Source Type: Journal    
DOI: 10.1007/s00704-012-0661-7     Document Type: Article
Times cited : (133)

References (43)
  • 1
    • 0023842669 scopus 로고
    • Simple procedure for generating sequences of daily radiation values using library of Markov transition matrices
    • Aguiar RJ, Collares-Perrira M, Conde JP (1988) Simple procedure for generating sequences of daily radiation values using library of Markov transition matrices. Sol Energy 40: 269-279.
    • (1988) Sol Energy , vol.40 , pp. 269-279
    • Aguiar, R.J.1    Collares-Perrira, M.2    Conde, J.P.3
  • 2
    • 34648852323 scopus 로고    scopus 로고
    • Locally recurrent neural networks for wind speed prediction using spatial correlation
    • Barbounis TG, Theocharis JB (2007) Locally recurrent neural networks for wind speed prediction using spatial correlation. Inform Sci 177: 5775-5797.
    • (2007) Inform Sci , vol.177 , pp. 5775-5797
    • Barbounis, T.G.1    Theocharis, J.B.2
  • 3
    • 0742268991 scopus 로고    scopus 로고
    • Support vector with adaptive parameters in financial time series forecasting
    • Cao LJ, Tay EH (2001) Support vector with adaptive parameters in financial time series forecasting. IEEE Trans Neural Netw 14: 1506-1518.
    • (2001) IEEE Trans Neural Netw , vol.14 , pp. 1506-1518
    • Cao, L.J.1    Tay, E.H.2
  • 5
    • 77957847865 scopus 로고    scopus 로고
    • Applying least squares support vector machines to the airframe wing-box structural design cost estimation
    • doi: 10. 1016/j. eswa. 2010. 05. 038
    • Deng S, Yeh TH (2010) Applying least squares support vector machines to the airframe wing-box structural design cost estimation. Expert Syst Appl. doi: 10. 1016/j. eswa. 2010. 05. 038.
    • (2010) Expert Syst Appl
    • Deng, S.1    Yeh, T.H.2
  • 7
    • 0036160859 scopus 로고    scopus 로고
    • Efficient SVM regression training with SMO
    • Flake GW, Lawrence S (2002) Efficient SVM regression training with SMO. Mach Learn 46: 271-290.
    • (2002) Mach Learn , vol.46 , pp. 271-290
    • Flake, G.W.1    Lawrence, S.2
  • 9
    • 84941871856 scopus 로고
    • The Kolmogorov-Smirnov test for goodness of fit
    • Frank J, Massey JR (1951) The Kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc 46: 68-78.
    • (1951) J Am Stat Assoc , vol.46 , pp. 68-78
    • Frank, J.1    Massey, J.R.2
  • 11
    • 0242497953 scopus 로고    scopus 로고
    • Fuzzy modelling of solar irradiance on inclined surfaces
    • Gomez V, Casanovas A (2003) Fuzzy modelling of solar irradiance on inclined surfaces. Sol Energy 75: 307-315.
    • (2003) Sol Energy , vol.75 , pp. 307-315
    • Gomez, V.1    Casanovas, A.2
  • 12
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu CW, Lin CJ (2002) A comparison of methods for multiclass support vector machines. IEEE Trans Neural Netw 13: 415-425.
    • (2002) IEEE Trans Neural Netw , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 14
    • 0000632352 scopus 로고    scopus 로고
    • Experiments in short-term precipitation forecasting using artificial neural networks
    • Kuligowaki RJ, Barros AP (1998) Experiments in short-term precipitation forecasting using artificial neural networks. Mon Weather Rev 126: 470-482.
    • (1998) Mon Weather Rev , vol.126 , pp. 470-482
    • Kuligowaki, R.J.1    Barros, A.P.2
  • 15
    • 0028813052 scopus 로고
    • Time modelling and spatial clustering of daily ambient temperature: an application in southern Italy
    • Macchiato MF, Rotonda L, Lapenna V, Ragosta M (1995) Time modelling and spatial clustering of daily ambient temperature: an application in southern Italy. Environmetrics 6: 31-53.
    • (1995) Environmetrics , vol.6 , pp. 31-53
    • Macchiato, M.F.1    Rotonda, L.2    Lapenna, V.3    Ragosta, M.4
  • 16
    • 34047267854 scopus 로고    scopus 로고
    • Weather analysis using ensemble of connectionist learning paradigms
    • Maqsood I, Abraham A (2007) Weather analysis using ensemble of connectionist learning paradigms. Appl Soft Comput 7: 995-1004.
    • (2007) Appl Soft Comput , vol.7 , pp. 995-1004
    • Maqsood, I.1    Abraham, A.2
  • 17
    • 3142666177 scopus 로고    scopus 로고
    • An ensemble of neural networks for weather forecasting
    • Maqsood I, Khan M (2004) An ensemble of neural networks for weather forecasting. Neural Comput Appl 13: 112-122.
    • (2004) Neural Comput Appl , vol.13 , pp. 112-122
    • Maqsood, I.1    Khan, M.2
  • 18
    • 0034786694 scopus 로고    scopus 로고
    • A nonlinear approach to modelling climatological time series
    • Matyasovszky I (2001) A nonlinear approach to modelling climatological time series. Theor Appl Climatol 69: 139-147.
    • (2001) Theor Appl Climatol , vol.69 , pp. 139-147
    • Matyasovszky, I.1
  • 19
    • 84871931777 scopus 로고    scopus 로고
    • Artificial intelligence techniques for modeling and forecasting of meteorological data: a survey
    • R. P. Lang and S. F. Lombargo (Eds.), USA: Nova
    • Mellit A (2009) Artificial intelligence techniques for modeling and forecasting of meteorological data: a survey. In: Lang RP, Lombargo SF (eds) Atmospheric turbulence, meteorological modeling and aerodynamics. Nova, USA.
    • (2009) Atmospheric Turbulence, Meteorological Modeling and Aerodynamics
    • Mellit, A.1
  • 20
    • 27144494198 scopus 로고    scopus 로고
    • A simplified model for generating sequences of global radiation data for isolated sites: using artificial neural network and a library of Markov transition matrices
    • Mellit A, Benghanem M, Hadj AA, Guessoum A (2005) A simplified model for generating sequences of global radiation data for isolated sites: using artificial neural network and a library of Markov transition matrices. Sol Energy 79(5): 468-482.
    • (2005) Sol Energy , vol.79 , Issue.5 , pp. 468-482
    • Mellit, A.1    Benghanem, M.2    Hadj, A.A.3    Guessoum, A.4
  • 21
    • 33646726754 scopus 로고    scopus 로고
    • An adaptive wavelet-network model for forecasting daily total solar radiation
    • Mellit A, Benghanem M, Kalogirou SA (2006) An adaptive wavelet-network model for forecasting daily total solar radiation. Appl Energy 83(7): 705-722.
    • (2006) Appl Energy , vol.83 , Issue.7 , pp. 705-722
    • Mellit, A.1    Benghanem, M.2    Kalogirou, S.A.3
  • 22
    • 41249099840 scopus 로고    scopus 로고
    • Methodology for predicting sequences of mean monthly clearness index and daily solar radiation data in remote areas: application for sizing a stand-alone PV system
    • Mellit A, Kalogirou SA, Shaari S, Salhi H, Hadj Arab A (2008) Methodology for predicting sequences of mean monthly clearness index and daily solar radiation data in remote areas: application for sizing a stand-alone PV system. Renew Energy 33(7): 1570-1590.
    • (2008) Renew Energy , vol.33 , Issue.7 , pp. 1570-1590
    • Mellit, A.1    Kalogirou, S.A.2    Shaari, S.3    Salhi, H.4    Hadj Arab, A.5
  • 23
    • 75449088043 scopus 로고    scopus 로고
    • An adaptive model for predicting of global, direct and diffuse hourly solar irradiance
    • Mellit A, Eleuch H, Benghanem M, Elaoun C, Pavan AM (2010) An adaptive model for predicting of global, direct and diffuse hourly solar irradiance. Energy Convers Manag 51: 771-782.
    • (2010) Energy Convers Manag , vol.51 , pp. 771-782
    • Mellit, A.1    Eleuch, H.2    Benghanem, M.3    Elaoun, C.4    Pavan, A.M.5
  • 24
    • 78049530768 scopus 로고    scopus 로고
    • FPGA-based implementation of intelligent predictor for global solar irradiation. Part I: theory and simulation
    • Mellit A, Mekki H, Adnane M, Kalogirou SA (2011) FPGA-based implementation of intelligent predictor for global solar irradiation. Part I: theory and simulation. Expert Syst Appl 38: 2668-2685.
    • (2011) Expert Syst Appl , vol.38 , pp. 2668-2685
    • Mellit, A.1    Mekki, H.2    Adnane, M.3    Kalogirou, S.A.4
  • 26
    • 67349119866 scopus 로고    scopus 로고
    • Comparison of LLR, MLP, Elman, NNARX and ANFIS models-with a case study in solar radiation estimation
    • Moghaddamnia A, Remesan R, Hassanpour KM, Mohammadi M, Han Piri DJ (2009) Comparison of LLR, MLP, Elman, NNARX and ANFIS models-with a case study in solar radiation estimation. J Atmos Sol-Terr Phys 71(8-9): 975-982.
    • (2009) J Atmos Sol-Terr Phys , vol.71 , Issue.8-9 , pp. 975-982
    • Moghaddamnia, A.1    Remesan, R.2    Hassanpour, K.M.3    Mohammadi, M.4    Han Piri, D.J.5
  • 28
    • 0034368418 scopus 로고    scopus 로고
    • Application of nonlinear forecasting techniques for meteorological modelling
    • Perez-Munuzuri V, Gelpi IR (2000) Application of nonlinear forecasting techniques for meteorological modelling. Ann Geophys 18: 1349-1359.
    • (2000) Ann Geophys , vol.18 , pp. 1349-1359
    • Perez-Munuzuri, V.1    Gelpi, I.R.2
  • 29
    • 79954501122 scopus 로고    scopus 로고
    • Atmospheric temperature prediction using support vector machines
    • Radhika Y, Shashi M (2009) Atmospheric temperature prediction using support vector machines. Int J Comput Theory Eng 1: 1793-8201.
    • (2009) Int J Comput Theory Eng , vol.1 , pp. 1793-8201
    • Radhika, Y.1    Shashi, M.2
  • 30
    • 79959943310 scopus 로고    scopus 로고
    • A comparison of time series forecasting using support vector machine and artificial neural network model
    • Samsudin R, Shabri A, Saad P (2010) A comparison of time series forecasting using support vector machine and artificial neural network model. J Appl Sci 10: 950-958.
    • (2010) J Appl Sci , vol.10 , pp. 950-958
    • Samsudin, R.1    Shabri, A.2    Saad, P.3
  • 31
    • 79952930723 scopus 로고    scopus 로고
    • Utilization of a least square support vector machine (LSSVM) for slope stability analysis
    • Samuia P, Kothari DP (2011) Utilization of a least square support vector machine (LSSVM) for slope stability analysis. Sci Iran A 18(1): 53-58.
    • (2011) Sci Iran A , vol.18 , Issue.1 , pp. 53-58
    • Samuia, P.1    Kothari, D.P.2
  • 33
    • 84871930298 scopus 로고
    • On the further development of Gringorten's stochastic model for climatological predictions
    • Sharon D (1967) On the further development of Gringorten's stochastic model for climatological predictions. J Appl Meteorol 6: 625-630.
    • (1967) J Appl Meteorol , vol.6 , pp. 625-630
    • Sharon, D.1
  • 34
    • 0343521431 scopus 로고
    • Statistical time series models of solar radiation and outdoor temperature identification of seasonal models by Kalman filter
    • Shuichi H, Mamoru M, Toshikazu I (1991) Statistical time series models of solar radiation and outdoor temperature identification of seasonal models by Kalman filter. Energy Build 15(3-4): 373-383.
    • (1991) Energy Build , vol.15 , Issue.3-4 , pp. 373-383
    • Shuichi, H.1    Mamoru, M.2    Toshikazu, I.3
  • 35
    • 0034127203 scopus 로고    scopus 로고
    • Artificial neural networks and long-range precipitation prediction in California
    • Silverman D, Dracup JA (2000) Artificial neural networks and long-range precipitation prediction in California. J Appl Meteorol 39: 57-66.
    • (2000) J Appl Meteorol , vol.39 , pp. 57-66
    • Silverman, D.1    Dracup, J.A.2
  • 36
    • 0033947480 scopus 로고    scopus 로고
    • Spatial interpolation of surface air temperatures using artificial neural networks: evaluating their use for downscaling GCMs
    • Snell SE, Gopal S, Kaufmann RK (2000) Spatial interpolation of surface air temperatures using artificial neural networks: evaluating their use for downscaling GCMs. J Clim 13: 886-895.
    • (2000) J Clim , vol.13 , pp. 886-895
    • Snell, S.E.1    Gopal, S.2    Kaufmann, R.K.3
  • 37
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9: 293-300.
    • (1999) Neural Process Lett , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 38
    • 0036532622 scopus 로고    scopus 로고
    • Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia
    • Tasadduq I, Rehman S, Bubshait K (2002) Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia. Renew Energy 25: 545-554.
    • (2002) Renew Energy , vol.25 , pp. 545-554
    • Tasadduq, I.1    Rehman, S.2    Bubshait, K.3
  • 39
    • 39449136003 scopus 로고    scopus 로고
    • Fuzzy modelling of solar irradiation using air temperature data
    • Tulcan-paulescu E, Paulescu M (2007) Fuzzy modelling of solar irradiation using air temperature data. Theor Appl Climatol 91(1-4): 181-192.
    • (2007) Theor Appl Climatol , vol.91 , Issue.1-4 , pp. 181-192
    • Tulcan-Paulescu, E.1    Paulescu, M.2
  • 41
    • 38849202538 scopus 로고    scopus 로고
    • Online prediction model based on support vector machine
    • Wanga W, Mena C, Lub W (2008) Online prediction model based on support vector machine. Neurocomputing 71: 550-558.
    • (2008) Neurocomputing , vol.71 , pp. 550-558
    • Wanga, W.1    Mena, C.2    Lub, W.3
  • 42
    • 84871938485 scopus 로고    scopus 로고
    • Neural network training for prediction of climatological time series, regularized by minimization of the generalized cross-validation function
    • Yuval Y (2000) Neural network training for prediction of climatological time series, regularized by minimization of the generalized cross-validation function. Am Meteorol Soc 128: 456-1473.
    • (2000) Am Meteorol Soc , vol.128 , pp. 456-1473
    • Yuval, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.