-
1
-
-
85037195692
-
-
J. R. Schrieffer, Theory of Superconductivity (Benjamin, New York, 1964)
-
J. R. Schrieffer, Theory of Superconductivity (Benjamin, New York, 1964).
-
-
-
-
2
-
-
85037218453
-
-
M. Tinkham, Introduction to Superconductivity, 2nd ed. (McGraw-Hill, New York, 1996)
-
M. Tinkham, Introduction to Superconductivity, 2nd ed. (McGraw-Hill, New York, 1996).
-
-
-
-
3
-
-
85037210629
-
-
R. E. Prange and S. M. Girvin, The Quantum Hall Effect, 2nd ed. (Springer-Verlag, New York, 1990)
-
R. E. Prange and S. M. Girvin, The Quantum Hall Effect, 2nd ed. (Springer-Verlag, New York, 1990).
-
-
-
-
7
-
-
85037234929
-
-
By “classical method” we are referring to all methods which employ calculations based on separable states. The Hartree-Fock method along with the concept of the Fermi surface are both examples of this type of reasoning. (The Fermi sea is expressible as a single Slater determinant so it can be considered to exhibit no quantum correlations 8. 910. 11
-
By “classical method” we are referring to all methods which employ calculations based on separable states. The Hartree-Fock method along with the concept of the Fermi surface are both examples of this type of reasoning. (The Fermi sea is expressible as a single Slater determinant so it can be considered to exhibit no quantum correlations 891011.)
-
-
-
-
9
-
-
0035435409
-
-
J. Schliemann, J. I. Cirac, M. Kuś, M. Lewenstein, and D. Loss, Phys. Rev. A 64, 022303 (2001).
-
(2001)
Phys. Rev. A
, vol.64
, pp. 22303
-
-
Schliemann, J.1
Cirac, J.I.2
Kuś, M.3
Lewenstein, M.4
Loss, D.5
-
11
-
-
4243896774
-
-
Y. S. Li, B. Zeng, X. S. Liu, and G. L. Long, Phys. Rev. A 64, 054302 (2001).
-
(2001)
Phys. Rev. A
, vol.64
, pp. 54302
-
-
Li, Y.S.1
Zeng, B.2
Liu, X.S.3
Long, G.L.4
-
12
-
-
4243216277
-
-
C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Phys. Rev. A 54, 3824 (1996).
-
(1996)
Phys. Rev. A
, vol.54
, pp. 3824
-
-
Bennett, C.H.1
DiVincenzo, D.P.2
Smolin, J.A.3
Wootters, W.K.4
-
15
-
-
4243445702
-
-
C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Phys. Rev. A 53, 2046 (1996).
-
(1996)
Phys. Rev. A
, vol.53
, pp. 2046
-
-
Bennett, C.H.1
Bernstein, H.J.2
Popescu, S.3
Schumacher, B.4
-
16
-
-
85037195405
-
-
T. J. Osborne and M. A. Nielsen, Quantum Inf. Process., e-print quant-ph/0109024 (to be published).
-
-
-
Osborne, T.J.1
Nielsen, M.A.2
-
17
-
-
85037250435
-
-
M. A. Nielsen, Ph.D. thesis, University of New Mexico, 1998 (unpublished)
-
-
-
Nielsen, M.A.1
-
22
-
-
84924581223
-
-
S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999)
-
S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999).
-
-
-
-
23
-
-
0031482045
-
-
S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Rev. Mod. Phys. 69, 315 (1997).
-
(1997)
Rev. Mod. Phys.
, vol.69
, pp. 315
-
-
Sondhi, S.L.1
Girvin, S.M.2
Carini, J.P.3
Shahar, D.4
-
25
-
-
84953269529
-
-
J. Cardy, Scaling and Renormalization in Statistical Physics (Cambridge University Press, Cambridge, 1996)
-
J. Cardy, Scaling and Renormalization in Statistical Physics (Cambridge University Press, Cambridge, 1996).
-
-
-
-
34
-
-
0035471721
-
-
D. Gunlycke, S. Bose, V. M. Kendon, and V. Vedral, Phys. Rev. A 64, 042302 (2001).
-
(2001)
Phys. Rev. A
, vol.64
, pp. 42302
-
-
Gunlycke, D.1
Bose, S.2
Kendon, V.M.3
Vedral, V.4
-
40
-
-
85037208485
-
-
B. K. Chakrabarti, A. Dutta, and P. Sen, Quantum Ising Phases and Transitions in Transverse Ising Models (Springer-Verlag, Berlin, 1996)
-
B. K. Chakrabarti, A. Dutta, and P. Sen, Quantum Ising Phases and Transitions in Transverse Ising Models (Springer-Verlag, Berlin, 1996).
-
-
-
-
48
-
-
4243789313
-
-
C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Phys. Rev. Lett. 76, 722 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 722
-
-
Bennett, C.H.1
Brassard, G.2
Popescu, S.3
Schumacher, B.4
Smolin, J.A.5
Wootters, W.K.6
-
50
-
-
4444269235
-
-
V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys. Rev. Lett. 78, 2275 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 2275
-
-
Vedral, V.1
Plenio, M.B.2
Rippin, M.A.3
Knight, P.L.4
-
51
-
-
85037251623
-
-
It should be noted that this interpretation is subject to the condition that (Formula presented) is additive
-
It should be noted that this interpretation is subject to the condition that (Formula presented) is additive.
-
-
-
-
54
-
-
85037226037
-
-
A. Auerbach, Interacting Electrons and Quantum Magnetism (Springer, New York, 1994)
-
A. Auerbach, Interacting Electrons and Quantum Magnetism (Springer, New York, 1994).
-
-
-
-
56
-
-
0037061511
-
-
A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature (London) 416, 608 (2002).
-
(2002)
Nature (London)
, vol.416
, pp. 608
-
-
Osterloh, A.1
Amico, L.2
Falci, G.3
Fazio, R.4
-
57
-
-
85037219244
-
-
It is worth noting that the concurrence (and therefore the entanglement of formation) measures only two-party entanglement. It does not measure the many-party entanglement in states like the GHZ state (Formula presented) where the concurrence is zero for any pair of spins
-
It is worth noting that the concurrence (and therefore the entanglement of formation) measures only two-party entanglement. It does not measure the many-party entanglement in states like the GHZ state (Formula presented) where the concurrence is zero for any pair of spins.
-
-
-
-
63
-
-
85037180491
-
-
By a purely three-party entanglement measure we mean an entanglement measure which quantifies purely three-party entanglement such as the GHZ state (Formula presented) (we implicitly assume that this measure is non-negative). For example, associated with the tangle (Formula presented) (the tangle (Formula presented) is equal to the square of the concurrence (Formula presented) such a measure is given by the three-tangle (see Ref. 54 for further details)
-
By a purely three-party entanglement measure we mean an entanglement measure which quantifies purely three-party entanglement such as the GHZ state (Formula presented) (we implicitly assume that this measure is non-negative). For example, associated with the tangle (Formula presented) (the tangle (Formula presented) is equal to the square of the concurrence (Formula presented) such a measure is given by the three-tangle (see Ref. 54 for further details).
-
-
-
|