-
1
-
-
0026239399
-
Chaotic spikes arising from a model of bursting in excitable-membranes
-
10.1137/0151071
-
Terman D. Chaotic spikes arising from a model of bursting in excitable-membranes. SIAM J. Appl. Math. 1991, 51:1418-1450. 10.1137/0151071.
-
(1991)
SIAM J. Appl. Math.
, vol.51
, pp. 1418-1450
-
-
Terman, D.1
-
2
-
-
0027625581
-
Bifurcations, burstings, chaos and crises in the Rose-Hindmarsh model for neuronal activity
-
10.1016/0960-0779(93)90029-Z
-
Fan Y. Holden A.V. Bifurcations, burstings, chaos and crises in the Rose-Hindmarsh model for neuronal activity. Chaos, Solitons Fractals 1993, 3:439-449. 10.1016/0960-0779(93)90029-Z.
-
(1993)
Chaos, Solitons Fractals
, vol.3
, pp. 439-449
-
-
Fan, Y.1
Holden, A.V.2
-
3
-
-
0000303940
-
Neural excitability, spiking and bursting
-
10.1142/S0218127400000840
-
Izhikevich E.M. Neural excitability, spiking and bursting. Int. J. Bifurcation Chaos 2000, 10:1171-1266. 10.1142/S0218127400000840.
-
(2000)
Int. J. Bifurcation Chaos
, vol.10
, pp. 1171-1266
-
-
Izhikevich, E.M.1
-
4
-
-
35649001607
-
A quantitative description of membrane current and its application to conduction and excitation in nerve
-
Hodekin A.L. Huxley A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117:500-544.
-
(1952)
J. Physiol.
, vol.117
, pp. 500-544
-
-
Hodekin, A.L.1
Huxley, A.F.2
-
5
-
-
0021768729
-
A model of neuronal bursting using three coupled first-order differential equations
-
10.1098/rspb.1984.0024
-
Hindmarsh J.L. Rose R.M. A model of neuronal bursting using three coupled first-order differential equations. Proc. R. Soc. London, Ser. B 1984, 221:87-102. 10.1098/rspb.1984.0024.
-
(1984)
Proc. R. Soc. London, Ser. B
, vol.221
, pp. 87-102
-
-
Hindmarsh, J.L.1
Rose, R.M.2
-
6
-
-
53349102813
-
Impulses and physiological states in models of nerve membrane
-
10.1016/S0006-3495(61)86902-6
-
FitzHugh R. Impulses and physiological states in models of nerve membrane. Biophys. J. 1961, 1:445-466. 10.1016/S0006-3495(61)86902-6.
-
(1961)
Biophys. J.
, vol.1
, pp. 445-466
-
-
FitzHugh, R.1
-
7
-
-
0000732703
-
From simple to complex oscillatory behaviour via intermittent chaos in the Rose-Hindmarsh model for neuronal activity
-
10.1016/0960-0779(92)90012-C
-
Holden A.V. Fan Y. From simple to complex oscillatory behaviour via intermittent chaos in the Rose-Hindmarsh model for neuronal activity. Chaos, Solitons Fractals 1992, 2:349-369. 10.1016/0960-0779(92)90012-C.
-
(1992)
Chaos, Solitons Fractals
, vol.2
, pp. 349-369
-
-
Holden, A.V.1
Fan, Y.2
-
8
-
-
0005159393
-
Crisis and topological entropy
-
10.1103/PhysRevE.51.1012
-
Fan Y. Chay T. Crisis and topological entropy. Phys. Rev. E 1995, 51:1012-1019. 10.1103/PhysRevE.51.1012.
-
(1995)
Phys. Rev. E
, vol.51
, pp. 1012-1019
-
-
Fan, Y.1
Chay, T.2
-
9
-
-
0026858346
-
From simple to simple bursting oscillatory behaviour via chaos in the Rose-Hindmarsh model for neuronal activity
-
10.1016/0960-0779(92)90032-I
-
Holden A.V. Fan Y.-S. From simple to simple bursting oscillatory behaviour via chaos in the Rose-Hindmarsh model for neuronal activity. Chaos, Solitons Fractals 1992, 2:221-236. 10.1016/0960-0779(92)90032-I.
-
(1992)
Chaos, Solitons Fractals
, vol.2
, pp. 221-236
-
-
Holden, A.V.1
Fan, Y.-S.2
-
10
-
-
44949266418
-
Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle
-
10.1016/0167-2789(93)90286-A
-
Wang X.J. Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle. Physica D 1993, 62:263-274. 10.1016/0167-2789(93)90286-A.
-
(1993)
Physica D
, vol.62
, pp. 263-274
-
-
Wang, X.J.1
-
11
-
-
17044455391
-
Observation of a continuous interior crisis in the Hindmarsh-Rose neuron model
-
10.1063/1.1594851
-
González-Miranda J.M. Observation of a continuous interior crisis in the Hindmarsh-Rose neuron model. Chaos 2003, 13:845-852. 10.1063/1.1594851.
-
(2003)
Chaos
, vol.13
, pp. 845-852
-
-
González-Miranda, J.M.1
-
12
-
-
9544252187
-
An alternative bifurcation analysis of the Rose-Hindmarsh model
-
10.1016/j.chaos.2004.06.080
-
Nikolov S. An alternative bifurcation analysis of the Rose-Hindmarsh model. Chaos, Solitons Fractals 2005, 23:1643-1649. 10.1016/j.chaos.2004.06.080.
-
(2005)
Chaos, Solitons Fractals
, vol.23
, pp. 1643-1649
-
-
Nikolov, S.1
-
13
-
-
37649016614
-
Dynamical phases of the Hindmarsh-Rose neuronal model: Studies of the transition from bursting to spiking chaos
-
10.1063/1.2818153
-
Innocenti G. Dynamical phases of the Hindmarsh-Rose neuronal model: Studies of the transition from bursting to spiking chaos. Chaos 2007, 17:043128. 10.1063/1.2818153.
-
(2007)
Chaos
, vol.17
, pp. 043128
-
-
Innocenti, G.1
-
14
-
-
67651115809
-
On the dynamics of chaotic spiking-bursting transition in the Hindmarsh-Rose neuron
-
10.1063/1.3156650
-
Innocenti G. Genesio R. On the dynamics of chaotic spiking-bursting transition in the Hindmarsh-Rose neuron. Chaos 2009, 19:023124. 10.1063/1.3156650.
-
(2009)
Chaos
, vol.19
, pp. 023124
-
-
Innocenti, G.1
Genesio, R.2
-
15
-
-
27144547553
-
Synchronization of bursting neurons: What matters in the network topology
-
10.1103/PhysRevLett.94.188101
-
Belykh I. Lange E. Hasler M. Synchronization of bursting neurons: What matters in the network topology. Phys. Rev. Lett. 2005, 94:188101. 10.1103/PhysRevLett.94.188101.
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 188101
-
-
Belykh, I.1
Lange, E.2
Hasler, M.3
-
16
-
-
58149288244
-
Multistability in networks of Hindmarsh-Rose neurons
-
10.1103/PhysRevE.78.061917
-
Erichsen R.J. Brunnet L.G. Multistability in networks of Hindmarsh-Rose neurons. Phys. Rev. E 2008, 78:061917. 10.1103/PhysRevE.78.061917.
-
(2008)
Phys. Rev. E
, vol.78
, pp. 061917
-
-
Erichsen, R.J.1
Brunnet, L.G.2
-
17
-
-
0000256610
-
Stability of analog neural networks with delay
-
10.1103/PhysRevA.39.347
-
Marcus C.M. Westervelt R.M. Stability of analog neural networks with delay. Phys. Rev. A 1989, 39:347-259. 10.1103/PhysRevA.39.347.
-
(1989)
Phys. Rev. A
, vol.39
, pp. 347-259
-
-
Marcus, C.M.1
Westervelt, R.M.2
-
18
-
-
0035335357
-
Dynamics of some neural network models with delay
-
10.1103/PhysRevE.63.051906
-
Ruan J. Li L. Lin W. Dynamics of some neural network models with delay. Phys. Rev. E 2001, 63:051906. 10.1103/PhysRevE.63.051906.
-
(2001)
Phys. Rev. E
, vol.63
, pp. 051906
-
-
Ruan, J.1
Li, L.2
Lin, W.3
-
19
-
-
1542400571
-
Enhancement of neural synchrony by time delay
-
10.1103/PhysRevLett.92.074104
-
Dhamala M. Jirsa V.K. Ding M. Enhancement of neural synchrony by time delay. Phys. Rev. Lett. 2004, 92:074104. 10.1103/PhysRevLett.92.074104.
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 074104
-
-
Dhamala, M.1
Jirsa, V.K.2
Ding, M.3
-
20
-
-
77649109705
-
Dynamics and double Hopf bifurcations of the Rose-Hindmarsh model with time delay
-
10.1142/S0218127409025080
-
Ma S. Feng Z. Lu Q. Dynamics and double Hopf bifurcations of the Rose-Hindmarsh model with time delay. Int. J. Bifurcation Chaos 2009, 19:3733-3751. 10.1142/S0218127409025080.
-
(2009)
Int. J. Bifurcation Chaos
, vol.19
, pp. 3733-3751
-
-
Ma, S.1
Feng, Z.2
Lu, Q.3
-
21
-
-
79953851483
-
Fold-Hopf bifurcations of the Rose-Hindmarsh model with time delay
-
10.1142/S0218127411028490
-
Ma S. Feng Z. Fold-Hopf bifurcations of the Rose-Hindmarsh model with time delay. Int. J. Bifurcation Chaos 2011, 21:437-452. 10.1142/S0218127411028490.
-
(2011)
Int. J. Bifurcation Chaos
, vol.21
, pp. 437-452
-
-
Ma, S.1
Feng, Z.2
-
22
-
-
33846986367
-
Bursting neurons with coupling delays
-
10.1016/j.physleta.2006.11.032
-
Burić N. Ranković D. Bursting neurons with coupling delays. Phys. Lett. A 2007, 363:282-289. 10.1016/j.physleta.2006.11.032.
-
(2007)
Phys. Lett. A
, vol.363
, pp. 282-289
-
-
Burić, N.1
Ranković, D.2
-
23
-
-
79954424105
-
Phase synchronizing in Hindmarsh-Rose neural networks with delayed chemical coupling
-
10.1016/j.neucom.2010.12.031
-
Jalili M. Phase synchronizing in Hindmarsh-Rose neural networks with delayed chemical coupling. Neurocomputing 2011, 74:1551-1556. 10.1016/j.neucom.2010.12.031.
-
(2011)
Neurocomputing
, vol.74
, pp. 1551-1556
-
-
Jalili, M.1
-
24
-
-
66549124138
-
Chaotic control of Hindmarsh-Rose neuron by delayed self-feedback
-
Yu H.J. Tong W.J. Chaotic control of Hindmarsh-Rose neuron by delayed self-feedback. Acta Phys. Sin. 2009, 58:2977-2982.
-
(2009)
Acta Phys. Sin.
, vol.58
, pp. 2977-2982
-
-
Yu, H.J.1
Tong, W.J.2
-
25
-
-
34250315551
-
Continuous control of chaos by self-controlling feedback
-
10.1016/0375-9601(92)90745-8
-
Pyragas K. Continuous control of chaos by self-controlling feedback. Phys. Lett. A 1992, 170:421-428. 10.1016/0375-9601(92)90745-8.
-
(1992)
Phys. Lett. A
, vol.170
, pp. 421-428
-
-
Pyragas, K.1
-
26
-
-
0000559545
-
Systems of differential equations containing a small parameter multiplying the derivative
-
Tikhonov A. Systems of differential equations containing a small parameter multiplying the derivative. Mat. Sb. 1952, 31:575-586.
-
(1952)
Mat. Sb.
, vol.31
, pp. 575-586
-
-
Tikhonov, A.1
-
27
-
-
0016070051
-
Asymptotic stability with rate conditions
-
10.1512/iumj.1974.23.23090
-
Fenichel N. Asymptotic stability with rate conditions. Indiania Univ. Math. J. 1974, 23:1109-1137. 10.1512/iumj.1974.23.23090.
-
(1974)
Indiania Univ. Math. J.
, vol.23
, pp. 1109-1137
-
-
Fenichel, N.1
-
28
-
-
34250627892
-
Geometric singular perturbation theory for ordinary differential equations
-
10.1016/0022-0396(79)90152-9
-
Fenichel N. Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equations 1979, 31:53-98. 10.1016/0022-0396(79)90152-9.
-
(1979)
J. Differ. Equations
, vol.31
, pp. 53-98
-
-
Fenichel, N.1
-
30
-
-
0033682963
-
Stability switches of time-delay dynamic systems with unknown parameters
-
10.1006/jsvi.1999.2817
-
Wang Z.H. Hu H.Y. Stability switches of time-delay dynamic systems with unknown parameters. J. Sound Vib. 2000, 233:215-233. 10.1006/jsvi.1999.2817.
-
(2000)
J. Sound Vib.
, vol.233
, pp. 215-233
-
-
Wang, Z.H.1
Hu, H.Y.2
|