-
1
-
-
77956957276
-
-
For a general review on the theoretical aspects as well as experimental observations of thermopower, see.
-
For a general review on the theoretical aspects as well as experimental observations of thermopower, see, G. D. Mahan, Good Thermoelectrics, Solid State Physics 51, 81 (1997).
-
(1997)
Good Thermoelectrics, Solid State Physics
, vol.51
, pp. 81
-
-
Mahan, G.D.1
-
3
-
-
0000975887
-
-
10.1103/PhysRevB.61.13397
-
D. J. Singh, Phys. Rev. B 61, 13397 (2000). 10.1103/PhysRevB.61.13397
-
(2000)
Phys. Rev. B
, vol.61
, pp. 13397
-
-
Singh, D.J.1
-
4
-
-
0034664474
-
Thermopower in cobalt oxides
-
DOI 10.1103/PhysRevB.62.6869
-
W. Koshibae, K. Tsutsui, and S. Maekawa, Phys. Rev. B 62, 6869 (2000). 10.1103/PhysRevB.62.6869 (Pubitemid 32323565)
-
(2000)
Physical Review B - Condensed Matter and Materials Physics
, vol.62
, Issue.11
, pp. 6869-6872
-
-
Koshibae, W.1
Tsutsui, K.2
Maekawa, S.3
-
5
-
-
0012257919
-
-
10.1103/PhysRevLett.87.236603
-
W. Koshibae and S. Maekawa, Phys. Rev. Lett. 87, 236603 (2001). 10.1103/PhysRevLett.87.236603
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 236603
-
-
Koshibae, W.1
Maekawa, S.2
-
7
-
-
84863326546
-
-
10.1063/1.4729789
-
Y. Nishikubo, S. Nakano, K. Kudo, and M. Nohara, Appl. Phys. Lett. 100, 252104 (2012). 10.1063/1.4729789
-
(2012)
Appl. Phys. Lett.
, vol.100
, pp. 252104
-
-
Nishikubo, Y.1
Nakano, S.2
Kudo, K.3
Nohara, M.4
-
8
-
-
36149016814
-
-
10.1103/PhysRev.138.A246
-
P. R. Emtage, Phys. Rev. B 138, A246 (1965). 10.1103/PhysRev.138.A246
-
(1965)
Phys. Rev. B
, vol.138
, pp. 246
-
-
Emtage, P.R.1
-
9
-
-
0003417617
-
-
(Vienna University of Technology, Wien).
-
P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, Wien2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Wien, 2001).
-
(2001)
Wien2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties
-
-
Blaha, P.1
Schwarz, K.2
Madsen, G.K.H.3
Kvasnicka, D.4
Luitz, J.5
-
10
-
-
4243943295
-
-
max = 10, 1024 k-points, and adopt the exchange correlation functional introduced by, [, ]. 10.1103/PhysRevLett.77.3865
-
max = 10, 1024 k-points, and adopt the exchange correlation functional introduced by J. P. Perdew, K. Burke, and M. Ernzerhof, [Phys. Rev. Lett. 77, 3865 (1996)]. 10.1103/PhysRevLett.77.3865
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 3865
-
-
Perdew, J.P.1
Burke, K.2
Ernzerhof, M.3
-
14
-
-
84871858007
-
-
The Wannier functions are generated by the code developed by.
-
The Wannier functions are generated by the code developed by A. A. Mostofi, J. R. Yates, N. Marzari, I. Souza, and D. Vanderbilt, (http://www.wannier.org/).
-
-
-
Mostofi, A.A.1
Yates, J.R.2
Marzari, N.3
Souza, I.4
Vanderbilt, D.5
-
15
-
-
77956265333
-
-
10.1016/j.cpc.2010.08.005
-
J. Kunes, R. Arita, P. Wissgott, A. Toschi, H. Ikeda, and K. Held, Comp. Phys. Commun. 181, 1888 (2010). 10.1016/j.cpc.2010.08.005
-
(2010)
Comp. Phys. Commun.
, vol.181
, pp. 1888
-
-
Kunes, J.1
Arita, R.2
Wissgott, P.3
Toschi, A.4
Ikeda, H.5
Held, K.6
-
16
-
-
84871865615
-
-
Here we omit the calculation result for the non-doped case. This is because the Seebeck coefficient for δ = 0 is very sensitive to the band gap, which cannot be estimated with enough accuracy in DFT calculations, especially when the gais small.
-
Here we omit the calculation result for the non-doped case. This is because the Seebeck coefficient for δ = 0 is very sensitive to the band gap, which cannot be estimated with enough accuracy in DFT calculations, especially when the gap is small.
-
-
-
|