메뉴 건너뛰기




Volumn 38, Issue 5, 2012, Pages 557-569

Variable selection strategies for nearest neighbor imputation methods used in remote sensing based forest inventory

Author keywords

[No Author keywords available]

Indexed keywords

DECISION TREES; SIMULATED ANNEALING;

EID: 84871872121     PISSN: 07038992     EISSN: 17127971     Source Type: Journal    
DOI: 10.5589/m12-046     Document Type: Article
Times cited : (71)

References (43)
  • 1
    • 0010557693 scopus 로고    scopus 로고
    • Introduction
    • Edited by Aarts, E., and Lenstra, J.K. John Wiley & Sons, New York
    • Aarts, E., and Lenstra, J.K. 1997. Introduction. In Local search in combinatorial optimization. Edited by Aarts, E., and Lenstra, J.K. John Wiley & Sons, New York, pp. 1-16.
    • (1997) Local Search in Combinatorial Optimization. , pp. 1-16
    • Aarts, E.1    Lenstra, J.K.2
  • 2
    • 0037076322 scopus 로고    scopus 로고
    • Selection bias in gene extraction on the basis of microarray gene-expression data
    • Ambroise, C., and McLachlan, G. 2002. Selection bias in gene extraction on the basis of microarray gene-expression data. Proceedings of the national academy of sciences, Vol. 99, No. 10, pp. 6562-6566. doi: 10.1073/pnas.102102699.
    • (2002) Proceedings of the National Academy of Sciences , vol.99 , Issue.10 , pp. 6562-6566
    • Ambroise, C.1    McLachlan, G.2
  • 4
    • 85044575962 scopus 로고    scopus 로고
    • DEM Generation from laser scanner data using adaptive TIN models
    • IAPRS, Amsterdam, The Netherlands
    • Axelsson, P. 2000. DEM Generation from laser scanner data using adaptive TIN models. In Proceedings of XlXth ISPRS Conference, IAPRS, Vol. XXXIII, Amsterdam, The Netherlands. pp. 110-117.
    • (2000) Proceedings of Xlxth ISPRS Conference , vol.33 , pp. 110-117
    • Axelsson, P.1
  • 5
    • 75149122295 scopus 로고    scopus 로고
    • Prediction of species specific forest inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral data
    • Breidenbach, J., Nssset, E., Lien, V, Gobakken, T., and Solberg, S. 2010. Prediction of species specific forest inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral data. Remote Sensing of Environment, Vol. 114, No. 4, pp. 911-924. doi: 10.1016/j.rse.2009.12.004.
    • (2010) Remote Sensing of Environment , vol.114 , Issue.4 , pp. 911-924
    • Breidenbach, J.1    Nssset, E.2    Lien, V.3    Gobakken, T.4    Solberg, S.5
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. 2001. Random forests. Machine Learning, Vol. 45, No. 1, pp. 5-32. doi: 10.1023/A:1010933404324.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 7
    • 85023707937 scopus 로고    scopus 로고
    • accessed 5 December 2011
    • Breiman, L., and A. Cutler. 2011. http://www.stat.berkeley.edu/-breiman/RandomForests/cc_home.htm. [accessed 5 December 2011].
    • (2011)
    • Breiman, L.1    Cutler, A.2
  • 8
    • 41249102587 scopus 로고    scopus 로고
    • Non-parametric and parametric methods using satellite images for estimating growing stock volume in alpine and Mediterranean forest ecosystems
    • Chirici, G., Barbati, A., Corona, P., Marchetti, M., Travaglini, D., Maselli, F., and Bertini, R. 2008. Non-parametric and parametric methods using satellite images for estimating growing stock volume in alpine and Mediterranean forest ecosystems. Remote Sensing of Environment, Vol. 112, No. 5, pp. 2686-2700. doi: 10.1016/j.rse.2008.01.002.
    • (2008) Remote Sensing of Environment , vol.112 , Issue.5 , pp. 2686-2700
    • Chirici, G.1    Barbati, A.2    Corona, P.3    Marchetti, M.4    Travaglini, D.5    Maselli, F.6    Bertini, R.7
  • 9
    • 40549143397 scopus 로고    scopus 로고
    • YaImpute: An R Package for kNN Imputation
    • Crookston, N.L., and Finley, A. 2008. yaImpute: An R Package for kNN Imputation. Journal of Statistical Software, Vol. 23, No. 10. Available from http://www.jstatsoft.org/.
    • (2008) Journal of Statistical Software , vol.23 , Issue.10
    • Crookston, N.L.1    Finley, A.2
  • 10
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Díaz-Uriarte, R., and de Andrés, S.A. 2006. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7: 3. Available from http://www.biomedcentral.com/bmcbioinformatics.
    • (2006) BMC Bioinformatics , vol.7 , Issue.3
    • Díaz-Uriarte, R.1    De Andrés, S.A.2
  • 11
    • 0001878035 scopus 로고
    • Multiple regression analysis
    • Edited by Ralston, A., and Wilf, H.S. New York: John Wiley & Sons
    • Efroymson, M.A. 1960. Multiple regression analysis. In Mathematical Methods for Digital Computers. Edited by Ralston, A., and Wilf, H.S. New York: John Wiley & Sons. pp. 191-203.
    • (1960) Mathematical Methods for Digital Computers , pp. 191-203
    • Efroymson, M.A.1
  • 12
    • 0034814349 scopus 로고    scopus 로고
    • Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbor method
    • Franco-Lopez, H., Ek, A.R., and Bauer, M.E. 2001. Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbor method. Remote Sensing of Environment, Vol. 77, No. 3, pp. 251-274. doi: 10.1016/S0034-4257(01)00209-7.
    • (2001) Remote Sensing of Environment , vol.77 , Issue.3 , pp. 251-274
    • Franco-Lopez, H.1    Ek, A.R.2    Bauer, M.E.3
  • 15
    • 84898964855 scopus 로고    scopus 로고
    • Result analysis of the NIPS 2003 feature selection challenge
    • Edited by Saul, L.K., Weiss, Y, and Bottou, L. MIT Press, Cambridge, MA
    • Guyon, I.M., Gunn, S.R., Ben Hur, A., and Dror, G. 2004. Result analysis of the NIPS 2003 feature selection challenge. In Advances in Neural Information Processing Systems 17. Edited by Saul, L.K., Weiss, Y, and Bottou, L. MIT Press, Cambridge, MA, pp. 545-552.
    • (2004) Advances in Neural Information Processing Systems 17 , pp. 545-552
    • Guyon, I.M.1    Gunn, S.R.2    Ben Hur, A.3    Dror, G.4
  • 16
    • 47549094902 scopus 로고    scopus 로고
    • Data combination and feature selection for multi source forest inventory
    • Haapanen, R., and Tuominen, S. 2008. Data combination and feature selection for multi source forest inventory. Photogrammetric Engineering and Remote Sensing, Vol. 74, No. 7, pp. 869-880.
    • (2008) Photogrammetric Engineering and Remote Sensing , vol.74 , Issue.7 , pp. 869-880
    • Haapanen, R.1    Tuominen, S.2
  • 19
    • 0017280570 scopus 로고
    • The analysis and selection of variables in linear regression
    • Hocking, R.R. 1976. The analysis and selection of variables in linear regression. Biometrics, Vol. 32, No. 1, pp. 1-49. doi: 10.2307/2529336.
    • (1976) Biometrics , vol.32 , Issue.1 , pp. 1-49
    • Hocking, R.R.1
  • 20
    • 41249100721 scopus 로고    scopus 로고
    • Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data
    • Corrigendum: Remote Sensing of Environment 2009. 113(1): 289-290. doi: 10.1016/j.rse.2008.08.006
    • Hudak, A.T., Crookston, N.L., Evans, J.S., Hall, D.E., and Falkowski, M.J. 2008. Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sensing of Environment, Vol. 112, No. 5, pp. 2232-2245. doi: 10.1016/j.rse.2007.10.009. Corrigendum: Remote Sensing of Environment 2009. 113(1): 289-290. doi: 10.1016/j.rse.2008.08.006.
    • (2008) Remote Sensing of Environment , vol.112 , Issue.5 , pp. 2232-2245
    • Hudak, A.T.1    Crookston, N.L.2    Evans, J.S.3    Hall, D.E.4    Falkowski, M.J.5
  • 21
    • 85023675270 scopus 로고    scopus 로고
    • accessed 10 September 2011
    • Jaiantilal, A. 2011. http://code.google.com/p/randomforest-matlab. [accessed 10 September 2011].
    • (2011)
    • Jaiantilal, A.1
  • 22
    • 26444479778 scopus 로고
    • Optimization by Simulated Annealing
    • Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P 1983. Optimization by Simulated Annealing. Science, Vol. 220, No. 4598, pp. 671-680. doi: 10.1126/science.220.4598.671.
    • (1983) Science , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 23
    • 77953963207 scopus 로고    scopus 로고
    • Tree species classification using airborne LiDAR - effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor type
    • Korpela, I., Ørka, H.O., Maltamo, M., Tokola, T., and Hyyppä, J. 2010. Tree species classification using airborne LiDAR - effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor type. Silva Fennica, Vol. 44, No. 2, pp. 319-339.
    • (2010) Silva Fennica , vol.44 , Issue.2 , pp. 319-339
    • Korpela, I.1    Ørka, H.O.2    Maltamo, M.3    Tokola, T.4    Hyyppä, J.5
  • 24
    • 0042379702 scopus 로고    scopus 로고
    • Variable selection by stepwise slicing in nonparametric regression
    • Kulasekera, K.B. 2001. Variable selection by stepwise slicing in nonparametric regression. Statistics & Probability Letters, Vol. 51, pp. 327-336. doi: 10.1016/S0167-7152(00)00167-X.
    • (2001) Statistics & Probability Letters , vol.51 , pp. 327-336
    • Kulasekera, K.B.1
  • 25
    • 0002039879 scopus 로고
    • Taper curve and volume function for pine, spruce and birch
    • Laasasenaho, J. 1982. Taper curve and volume function for pine, spruce and birch. Communicationes Instituti Forestalis Fenniae, Vol. 108, pp. 1-74.
    • (1982) Communicationes Instituti Forestalis Fenniae , vol.108 , pp. 1-74
    • Laasasenaho, J.1
  • 26
    • 77957768057 scopus 로고    scopus 로고
    • Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: Application of multiple optical/LiDAR-derived predictors
    • Latifi, H., Nothdurft, A., and Koch, B. 2010. Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived predictors. Forestry, Vol. 83, No. 4, pp. 395-407. doi: 10.1093/forestry/cpq022.
    • (2010) Forestry , vol.83 , Issue.4 , pp. 395-407
    • Latifi, H.1    Nothdurft, A.2    Koch, B.3
  • 27
    • 18044374299 scopus 로고    scopus 로고
    • Comparison of nearest neighbor methods for estimating basal area and stems per hectare using aerial auxiliary variables
    • LeMay, V, and Temesgen, H. 2005. Comparison of nearest neighbor methods for estimating basal area and stems per hectare using aerial auxiliary variables. Forest Science, Vol. 51, No. 2, pp. 109-119.
    • (2005) Forest Science , vol.51 , Issue.2 , pp. 109-119
    • Lemay, V.1    Temesgen, H.2
  • 28
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by random-Forest
    • Liaw, A., and Wiener, M. 2002. Classification and regression by random-Forest. R News, Vol. 2, No. 3, pp. 18-22. Available from http://cran. r-project.org/doc/Rnews/Rnews_2002-3.pdf.
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 29
    • 33646849465 scopus 로고    scopus 로고
    • Nonparametric estimation of plot volume using laser scanning, aerial photography and stand register data
    • Maltamo, M., Malinen, J., Packalén, P, Suvanto, A., and Kangas, J. 2006. Nonparametric estimation of plot volume using laser scanning, aerial photography and stand register data. Canadian Journal of Forest Research, Vol. 36, No. 2, pp. 426-436. doi: 10.1139/x05-246.
    • (2006) Canadian Journal of Forest Research , vol.36 , Issue.2 , pp. 426-436
    • Maltamo, M.1    Malinen, J.2    Packalén, P.3    Suvanto, A.4    Kangas, J.5
  • 30
    • 0000256443 scopus 로고
    • Most similar neighbor: An improved sampling inference procedure for natural resource planning
    • Moeur, M., and Stage, A.R. 1995. Most similar neighbor: an improved sampling inference procedure for natural resource planning. Forest Science, Vol. 41, No. 2, pp. 337-359.
    • (1995) Forest Science , vol.41 , Issue.2 , pp. 337-359
    • Moeur, M.1    Stage, A.R.2
  • 31
    • 70349102828 scopus 로고    scopus 로고
    • Performance of several variable-selection methods applied to real ecological data
    • Murtaugh, PA. 2009. Performance of several variable-selection methods applied to real ecological data. Ecology Letters, Vol. 12, No. 10, pp. 1061-1068. doi: 10.1111/j.1461-0248.2009.01361.x.
    • (2009) Ecology Letters , vol.12 , Issue.10 , pp. 1061-1068
    • Murtaugh, P.A.1
  • 33
    • 0001477308 scopus 로고
    • A simplex method for function minimization
    • Nelder, J.A., and Mead, R. 1965. A simplex method for function minimization. Computer Journal, Vol. 7, No. 4, pp. 391-398.
    • (1965) Computer Journal , vol.7 , Issue.4 , pp. 391-398
    • Nelder, J.A.1    Mead, R.2
  • 34
    • 34250374908 scopus 로고    scopus 로고
    • The k-MSN method for the prediction of species-specific stand attributes using airborne laser scanning and aerial photographs
    • Packalén, P, and Maltamo, M. 2007. The k-MSN method for the prediction of species-specific stand attributes using airborne laser scanning and aerial photographs. Remote Sensing of Environment, Vol. 109, No. 3, pp. 328-341. doi: 10.1016/j.rse.2007.01.005.
    • (2007) Remote Sensing of Environment , vol.109 , Issue.3 , pp. 328-341
    • Packalén, P.1    Maltamo, M.2
  • 35
    • 74049126022 scopus 로고    scopus 로고
    • A two stage method to estimate species-specific growing stock by combining ALS data and aerial photographs of known orientation parameters
    • Packalén, P, Suvanto, A., and Maltamo, M. 2009. A two stage method to estimate species-specific growing stock by combining ALS data and aerial photographs of known orientation parameters. Photogrammetric Engineering and Remote Sensing, Vol. 75, No. 12, pp. 1451-1460.
    • (2009) Photogrammetric Engineering and Remote Sensing , vol.75 , Issue.12 , pp. 1451-1460
    • Packalén, P.1    Suvanto, A.2    Maltamo, M.3
  • 36
    • 84890445089 scopus 로고    scopus 로고
    • Overfitting in making comparisons between variable selection methods
    • Reunanen, J. 2003. Overfitting in making comparisons between variable selection methods. Journal of Machine Learning Research, Vol. 3, No. 7-8, pp. 1371-1382.
    • (2003) Journal of Machine Learning Research , vol.3 , Issue.7-8 , pp. 1371-1382
    • Reunanen, J.1
  • 37
    • 84952503562 scopus 로고
    • Thirteen ways to look at the correlation coefficient
    • Rodgers, J.L., and Nicewander, W.A. 1988. Thirteen ways to look at the correlation coefficient. The American Statistician, Vol. 42, No. 1, pp. 59-66. doi: 10.2307/2685263.
    • (1988) The American Statistician , vol.42 , Issue.1 , pp. 59-66
    • Rodgers, J.L.1    Nicewander, W.A.2
  • 39
    • 3242666106 scopus 로고    scopus 로고
    • Using coarse scale forest variables as ancillary information and weighting of variables in k-NN estimation: A genetic algorithm approach
    • Tomppo, E., and Halme, M. 2004. Using coarse scale forest variables as ancillary information and weighting of variables in k-NN estimation: a genetic algorithm approach. Remote Sensing of Environment, Vol. 92, No. 1, pp. 1-20. doi: 10.1016/j.rse.2004.04.003.
    • (2004) Remote Sensing of Environment , vol.92 , Issue.1 , pp. 1-20
    • Tomppo, E.1    Halme, M.2
  • 43
    • 70349234037 scopus 로고    scopus 로고
    • Consistent variable selection in additive models
    • Xue, L. 2009. Consistent variable selection in additive models. Statistica Sinica, Vol. 19, pp. 1281-1296.
    • (2009) Statistica Sinica , vol.19 , pp. 1281-1296
    • Xue, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.