-
1
-
-
0043126911
-
Logistic regression and artificial neural network classification models: A methodology review
-
DOI 10.1016/S1532-0464(03)00034-0
-
Dreiseitl S., Ohno-Machado L., Logistic regression and artificial neural network classification models: a methodology review. Journal of Biomedical Informatics 2002 35 5-6 352 359 2-s2.0-0043126911 10.1016/S1532-0464(03)00034-0 (Pubitemid 36951935)
-
(2002)
Journal of Biomedical Informatics
, vol.35
, Issue.5-6
, pp. 352-359
-
-
Dreiseitl, S.1
Ohno-Machado, L.2
-
2
-
-
53849126165
-
Neural networks and statistical techniques: A review of applications
-
2-s2.0-53849126165 10.1016/j.eswa.2007.10.005
-
Paliwal M., Kumar U. A., Neural networks and statistical techniques: a review of applications. Expert Systems with Applications 2009 36 1 2 17 2-s2.0-53849126165 10.1016/j.eswa.2007.10.005
-
(2009)
Expert Systems with Applications
, vol.36
, Issue.1
, pp. 2-17
-
-
Paliwal, M.1
Kumar, U.A.2
-
3
-
-
34248647301
-
Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease
-
DOI 10.1016/j.eswa.2006.09.004, PII S0957417406002855
-
Kurt I., Ture M., Kurum A. T., Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease. Expert Systems with Applications 2008 34 1 366 374 2-s2.0-34248647301 10.1016/j.eswa.2006.09.004 (Pubitemid 46766626)
-
(2008)
Expert Systems with Applications
, vol.34
, Issue.1
, pp. 366-374
-
-
Kurt, I.1
Ture, M.2
Kurum, A.T.3
-
5
-
-
67349202473
-
The study that applies artificial intelligence and logistic regression for assistance in differential diagnostic of pancreatic cancer
-
2-s2.0-67349202473 10.1016/j.eswa.2009.02.046
-
Chang C. L., Hsu M. Y., The study that applies artificial intelligence and logistic regression for assistance in differential diagnostic of pancreatic cancer. Expert Systems with Applications 2009 36 7 10663 10672 2-s2.0-67349202473 10.1016/j.eswa.2009.02.046
-
(2009)
Expert Systems with Applications
, vol.36
, Issue.7
, pp. 10663-10672
-
-
Chang, C.L.1
Hsu, M.Y.2
-
6
-
-
0037290181
-
Variable selection for multivariate logistic regression models
-
10.1016/S0378-3758(02)00284-7 1955871 ZBL1027.62015
-
Chen M.-H., Dey D. K., Variable selection for multivariate logistic regression models. Journal of Statistical Planning and Inference 2003 111 1-2 37 55 10.1016/S0378-3758(02)00284-7 1955871 ZBL1027.62015
-
(2003)
Journal of Statistical Planning and Inference
, vol.111
, Issue.1-2
, pp. 37-55
-
-
Chen, M.-H.1
Dey, D.K.2
-
7
-
-
67349089080
-
An improved model averaging scheme for logistic regression
-
10.1016/j.jmva.2009.01.006 2535378 ZBL1163.62029
-
Ghosh D., Yuan Z., An improved model averaging scheme for logistic regression. Journal of Multivariate Analysis 2009 100 8 1670 1681 10.1016/j.jmva.2009.01.006 2535378 ZBL1163.62029
-
(2009)
Journal of Multivariate Analysis
, vol.100
, Issue.8
, pp. 1670-1681
-
-
Ghosh, D.1
Yuan, Z.2
-
9
-
-
67349161370
-
A variable selection method based on Tabu search for logistic regression models
-
10.1016/j.ejor.2008.10.007 2533290 ZBL1176.90268
-
Pacheco J., Casado S., Núñez L., A variable selection method based on Tabu search for logistic regression models. European Journal of Operational Research 2009 199 2 506 511 10.1016/j.ejor.2008.10.007 2533290 ZBL1176.90268
-
(2009)
European Journal of Operational Research
, vol.199
, Issue.2
, pp. 506-511
-
-
Pacheco, J.1
Casado, S.2
Núñez, L.3
|