-
1
-
-
19744366972
-
Band-to-band tunneling in carbon nanotube field-effect transistors
-
Nov
-
J. Appenzeller, Y. M. Lin, J. Knoch, and P. Avouris, "Band-to-band tunneling in carbon nanotube field-effect transistors, " Phys. Rev. Lett., vol. 93, no. 19, pp. 196805-1-196805-4, Nov. 2004.
-
(2004)
Phys. Rev. Lett
, vol.93
, Issue.19
, pp. 1968051-1968054
-
-
Appenzeller, J.1
Lin, Y.M.2
Knoch, J.3
Avouris, P.4
-
2
-
-
29244461475
-
Comparing carbon nanotube transistors - The ideal choice: A novel tunneling device design
-
DOI 10.1109/TED.2005.859654
-
J. Appenzeller, Y. Lin, J. Knoch, Z. Chen, and P. Avouris, "Comparing carbon nanotube transistors-The ideal choice: A novel tunneling device design, " IEEE Trans. Electron Devices, vol. 52, no. 12, pp. 2568-2576, Dec. 2005. (Pubitemid 41824835)
-
(2005)
IEEE Transactions on Electron Devices
, vol.52
, Issue.12
, pp. 2568-2576
-
-
Appenzeller, J.1
Lin, Y.-M.2
Knoch, J.3
Chen, Z.4
Avouris, P.5
-
3
-
-
81555207228
-
Tunnel field-effect transistors as energyefficient electronic switches
-
Nov.
-
A. M. Ionescu and H. Riel, "Tunnel field-effect transistors as energyefficient electronic switches, " Nature, vol. 479, no. 7373, pp. 329-237, Nov. 2011.
-
(2011)
Nature
, vol.479
, Issue.7373
, pp. 329-237
-
-
Ionescu, A.M.1
Riel, H.2
-
4
-
-
44049092149
-
Silicon nanowire tunneling field-effect transistors
-
May
-
M. T. Björk, J. Knoch, H. Schmid, H. Riel, and W. Riess, "Silicon nanowire tunneling field-effect transistors, " Appl. Phys. Lett., vol. 92, no. 19, pp. 193504-1-193504-3, May 2008.
-
(2008)
Appl. Phys. Lett
, vol.92
, Issue.19
, pp. 1935041-1935043
-
-
Björk, M.T.1
Knoch, J.2
Schmid, H.3
Riel, H.4
Riess, W.5
-
5
-
-
0027206273
-
Rigorous theory and simplified model of the band-to-band tunneling in silicon
-
A. Schenk, "Rigorous theory and simplified model of the band-to-band tunneling in silicon, " Solid State Electron., vol. 36, no. 1, pp. 19-34, Jan. 1993. (Pubitemid 23620502)
-
(1993)
Solid-State Electronics
, vol.36
, Issue.1
, pp. 19-34
-
-
Schenk, A.1
-
6
-
-
77952338134
-
Experimental demonstration of 100 nm channel length In0. 53Ga0. 47As-based vertical inter-band tunnel field effect transistors (TFET) for ultra low-power logic and SRAM applications
-
S. Mookerjea, D. Mohata, R. Krishnan, J. Singh, A. Vallett, A. Ali, T. Mayer, V. Narayanan, D. Schlom, A. Liu, and S. Datta, "Experimental demonstration of 100 nm channel length In0. 53Ga0. 47As-based vertical inter-band tunnel field effect transistors (TFET) for ultra low-power logic and SRAM applications, " in Proc. IEEE Int. Electron Devices Meeting, 2009, pp. 1-3.
-
(2009)
Proc IEEE Int. Electron Devices Meeting
, pp. 1-3
-
-
Mookerjea, S.1
Mohata, D.2
Krishnan, R.3
Singh, J.4
Vallett, A.5
Ali, A.6
Mayer, T.7
Narayanan, V.8
Schlom, D.9
Liu, A.10
Datta, S.11
-
7
-
-
65249105994
-
Computational study of tunneling transistor based on graphene nanoribbon
-
Feb
-
P. Zhao, J. Chauhan, and J. Guo, "Computational study of tunneling transistor based on graphene nanoribbon, " Nano Lett., vol. 9, no. 2, pp. 684-688, Feb. 2009.
-
(2009)
Nano Lett
, vol.9
, Issue.2
, pp. 684-688
-
-
Zhao, P.1
Chauhan, J.2
Guo, J.3
-
8
-
-
33751348065
-
Energy gaps in graphene nanoribbons
-
Nov
-
Y. W. Son, M. L. Cohen, and S. G. Louie, "Energy gaps in graphene nanoribbons, " Phys. Rev. Lett., vol. 97, no. 21, pp. 216803-1-216803-4, Nov. 2006.
-
(2006)
Phys. Rev. Lett
, vol.97
, Issue.21
, pp. 2168031-2168034
-
-
Son, Y.W.1
Cohen, M.L.2
Louie, S.G.3
-
9
-
-
46049090269
-
Armchair graphene nanoribbons: Electronic structure and electric-field modulation
-
Jun
-
H. Raza and E. C. Kan, "Armchair graphene nanoribbons: Electronic structure and electric-field modulation, " Phys. Rev. B, Condens. Matter, vol. 77, no. 24, pp. 245434-1-245434-5, Jun. 2008.
-
(2008)
Phys. Rev. B, Condens. Matter
, vol.77
, Issue.24
, pp. 2454341-2454345
-
-
Raza, H.1
Kan, E.C.2
-
10
-
-
79952406873
-
Single-layer MoS2 transistors
-
Mar.
-
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors, " Nat. Nanotechnol., vol. 6, no. 3, pp. 147-150, Mar. 2011.
-
(2011)
Nat. Nanotechnol
, vol.6
, Issue.3
, pp. 147-150
-
-
Radisavljevic, B.1
Radenovic, A.2
Brivio, J.3
Giacometti, V.4
Kis, A.5
-
11
-
-
84555223620
-
Integrated circuits and logic operations based on single-layer MoS2
-
Dec.
-
B. Radisavljevic, M. B. Whitwick, and A. Kis, "Integrated circuits and logic operations based on single-layer MoS2, " ACS Nano, vol. 5, no. 12, pp. 9934-9938, Dec. 2011.
-
(2011)
ACS Nano
, vol.5
, Issue.12
, pp. 9934-9938
-
-
Radisavljevic, B.1
Whitwick, M.B.2
Kis, A.3
-
12
-
-
80052790285
-
How good can monolayer MoS2 transistors be?
-
Sep.
-
Y. Yoon, K. Ganapathi, and S. Salahuddin, "How good can monolayer MoS2 transistors be?" Nano Lett., vol. 11, no. 9, pp. 3768-73, Sep. 2011.
-
(2011)
Nano Lett
, vol.11
, Issue.9
, pp. 3768-3773
-
-
Yoon, Y.1
Ganapathi, K.2
Salahuddin, S.3
-
13
-
-
77957204738
-
Atomically thin MoS2: A new direct-gap semiconductor
-
Sep.
-
K. Mak, C. Lee, J. Hone, J. Shan, and T. Heinz, "Atomically thin MoS2: A new direct-gap semiconductor, " Phys. Rev. Lett., vol. 105, no. 13, pp. 136805-1-136805-4, Sep. 2010.
-
(2010)
Phys. Rev. Lett
, vol.105
, Issue.13
, pp. 1368051-1368054
-
-
Mak, K.1
Lee, C.2
Hone, J.3
Shan, J.4
Heinz, T.5
-
14
-
-
77951069162
-
Emerging photoluminescence in monolayer MoS2
-
Apr.
-
A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, "Emerging photoluminescence in monolayer MoS2, " Nano Lett., vol. 10, no. 4, pp. 1271-1275, Apr. 2010.
-
(2010)
Nano Lett
, vol.10
, Issue.4
, pp. 1271-1275
-
-
Splendiani, A.1
Sun, L.2
Zhang, Y.3
Li, T.4
Kim, J.5
Chim, C.-Y.6
Galli, G.7
Wang, F.8
-
15
-
-
57549105653
-
MoS2 nanoribbons: High stability and unusual electronic and magnetic properties
-
Dec
-
Y. Li, Z. Zhou, S. Zhang, and Z. Chen, "MoS2 nanoribbons: High stability and unusual electronic and magnetic properties, " J. Amer. Chem. Soc., vol. 130, no. 49, pp. 16 739-16 744, Dec. 2008.
-
(2008)
J. Amer. Chem. Soc
, vol.130
, Issue.49
, pp. 16739-16744
-
-
Li, Y.1
Zhou, Z.2
Zhang, S.3
Chen, Z.4
-
16
-
-
79953210099
-
Mechanical and electronic properties of MoS2 nanoribbons and their defects
-
Mar.
-
C. Ataca, H. Sahin, E. Aktürk, and S. Ciraci, "Mechanical and electronic properties of MoS2 nanoribbons and their defects, " J. Phys. Chem. C, vol. 115, no. 10, pp. 3934-3941, Mar. 2011.
-
(2011)
J. Phys. Chem. C
, vol.115
, Issue.10
, pp. 3934-3941
-
-
Ataca, C.1
Sahin, H.2
Aktürk, E.3
Ciraci, S.4
-
17
-
-
84864476575
-
Bandgap tuning in armchair MoS2 nanoribbon
-
Aug.
-
Q. Yue, S. Chang, J. Kang, X. Zhang, Z. Shao., S. Qin, and J. Li, "Bandgap tuning in armchair MoS2 nanoribbon, " J. Phys.: Condens. Matt., vol. 24, no. 33, pp. 335501-1-335501-7, Aug. 2012.
-
(2012)
J. Phys.: Condens. Matt
, vol.24
, Issue.33
, pp. 3355011-3355017
-
-
Yue, Q.1
Chang, S.2
Kang, J.3
Zhang, X.4
Shao, Z.5
Qin, S.6
Li, J.7
-
18
-
-
84871742993
-
-
Quantum Wise Simulator [Online] Available
-
QuantumWise Simulator, Atomistix ToolKit (ATK). [Online]. Available: http://www. quantumwise. com/
-
Atomistix ToolKit (ATK)
-
-
-
19
-
-
77952416438
-
Simulation of nanowire tunneling transistors: From the Wentzel-Kramers-Brillouin approximation to fullband phonon-assisted tunneling
-
Apr.
-
M. Luisier and G. Klimeck, "Simulation of nanowire tunneling transistors: From the Wentzel-Kramers-Brillouin approximation to fullband phonon-assisted tunneling, " J. Appl. Phys., vol. 107, no. 8, pp. 084507-1-084507-6, Apr. 2010.
-
(2010)
J. Appl. Phys
, vol.107
, Issue.8
, pp. 0845071-0845076
-
-
Luisier, M.1
Klimeck, G.2
-
20
-
-
77956058450
-
Crystallographic-orientation-dependent gate-induced drain leakage in nanoscale MOSFETs
-
Sep.
-
R. K. Pandey, K. V. R. M. Murali, S. S. Furkay, P. J. Oldiges, and E. J. Nowak, "Crystallographic-orientation-dependent gate-induced drain leakage in nanoscale MOSFETs, " IEEE Trans. Electron Devices, vol. 57, no. 9, pp. 2098-2105, Sep. 2010.
-
(2010)
IEEE Trans. Electron Devices
, vol.57
, Issue.9
, pp. 2098-2105
-
-
Pandey, R.K.1
Murali, K.V.R.M.2
Furkay, S.S.3
Oldiges, P.J.4
Nowak, E.J.5
-
21
-
-
33748331486
-
Extended Hückel theory for band structure, chemistry and transport. I. Carbon nanotubes
-
Aug
-
D. Kienle, J. I. Cerda, and A. W. Ghosh, "Extended Hückel theory for band structure, chemistry and transport. I. Carbon nanotubes, " J. Appl. Phys., vol. 100, no. 4, pp. 043714-1-043714-9, Aug. 2006.
-
(2006)
J. Appl. Phys
, vol.100
, Issue.4
, pp. 0437141-0437149
-
-
Kienle, D.1
Cerda, J.I.2
Ghosh, A.W.3
-
22
-
-
0001436270
-
Accurate and transferable extended Hückel-type tight-binding parameters
-
Mar
-
J. Cerda and F. Soria, "Accurate and transferable extended Hückel-type tight-binding parameters, " Phys. Rev. B, vol. 61, no. 12, pp. 7965-7971, Mar. 2000.
-
(2000)
Phys. Rev. B
, vol.61
, Issue.12
, pp. 7965-7971
-
-
Cerda, J.1
Soria, F.2
-
23
-
-
84986524957
-
Convergence acceleration of iterative sequences the case of SCF iteration
-
Jul
-
P. Pulay, "Convergence acceleration of iterative sequences the case of SCF iteration, " Chem. Phys. Lett., vol. 73, no. 2, pp. 393-398, Jul. 1980.
-
(1980)
Chem. Phys. Lett
, vol.73
, Issue.2
, pp. 393-398
-
-
Pulay, P.1
-
26
-
-
58049208431
-
Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening
-
Nov
-
Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, "Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening, " ACS Nano, vol. 2, no. 11, pp. 2301-2305, Nov. 2008.
-
(2008)
ACS Nano
, vol.2
, Issue.11
, pp. 2301-2305
-
-
Ni, Z.H.1
Yu, T.2
Lu, Y.H.3
Wang, Y.Y.4
Feng, Y.P.5
Shen, Z.X.6
-
27
-
-
59649099717
-
Large-scale pattern growth of graphene films for stretchable transparent electrodes
-
Feb
-
K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes, " Nature, vol. 457, no. 7230, pp. 706-710, Feb. 2009.
-
(2009)
Nature
, vol.457
, Issue.7230
, pp. 706-710
-
-
Kim, K.S.1
Zhao, Y.2
Jang, H.3
Lee, S.Y.4
Kim, J.M.5
Kim, K.S.6
Ahn, J.H.7
Kim, P.8
Choi, J.Y.9
Hong, B.H.10
-
28
-
-
77954071959
-
Modeling and simulation of uniaxial strain effects in armchair graphene nanoribbon tunneling field effect transistors
-
Jun.
-
J. Kang, Y. He, J. Zhang, and X. Yu, "Modeling and simulation of uniaxial strain effects in armchair graphene nanoribbon tunneling field effect transistors, " Appl. Phys. Lett., vol. 96, no. 25, pp. 252105-1-252105-3, Jun. 2010.
-
(2010)
Appl. Phys. Lett
, vol.96
, Issue.25
, pp. 2521051-2521053
-
-
Kang, J.1
He, Y.2
Zhang, J.3
Yu, X.4
-
29
-
-
80052022710
-
Complex band structures: From parabolic to elliptic approximation
-
Sep.
-
X. Guan, D. Kim, K. C. Saraswat, and H.-S. P. Wong, "Complex band structures: From parabolic to elliptic approximation, " IEEE Electron Device Lett., vol. 32, no. 9, pp. 1296-1298, Sep. 2011.
-
(2011)
IEEE Electron Device Lett
, vol.32
, Issue.9
, pp. 1296-1298
-
-
Guan, X.1
Kim, D.2
Saraswat, K.C.3
Wong, H.-S.P.4
-
31
-
-
84856295372
-
Direct and indirect band-to-band tunneling in germanium-based TFETs
-
Feb.
-
K. H. Kao, A. S. Verhulst, W. G. Vandenberghe, B. Soree, G. Groeseneken, and K. D. Meyer, "Direct and indirect band-to-band tunneling in germanium-based TFETs, " IEEE Trans. Electron Devices, vol. 59, no. 2, pp. 292-301, Feb. 2012.
-
(2012)
IEEE Trans. Electron Devices
, vol.59
, Issue.2
, pp. 292-301
-
-
Kao, K.H.1
Verhulst, A.S.2
Vandenberghe, W.G.3
Soree, B.4
Groeseneken, G.5
Meyer, K.D.6
-
32
-
-
70549111129
-
Drive currents and leakage currents in InSb and InAs nanowire and carbon nanotube band-to-band tunneling FETs
-
Dec
-
M. A. Khayer and R. K. Lake, "Drive currents and leakage currents in InSb and InAs nanowire and carbon nanotube band-to-band tunneling FETs, " IEEE Electron Device Lett., vol. 30, no. 12, pp. 1257-1259, Dec. 2009.
-
(2009)
IEEE Electron Device Lett
, vol.30
, Issue.12
, pp. 1257-1259
-
-
Khayer, M.A.1
Lake, R.K.2
-
33
-
-
52349102582
-
Zener tunneling in semiconducting nanotube and graphene nanoribbon p-n junctions
-
Sep
-
D. Jena, T. Fang, Q. Zhang, and H. Xing, "Zener tunneling in semiconducting nanotube and graphene nanoribbon p-n junctions, " Appl. Phys. Lett., vol. 93, no. 11, pp. 112106-1-112106-3, Sep. 2008.
-
(2008)
Appl. Phys. Lett
, vol.93
, Issue.11
, pp. 1121061-1121063
-
-
Jena, D.1
Fang, T.2
Zhang, Q.3
Xing, H.4
-
34
-
-
74049159928
-
Projected performance advantage of multilayer graphene nanoribbons as a transistor channel material
-
Jan.
-
Y. Ouyang, H. J. Dai, and J. Guo, "Projected performance advantage of multilayer graphene nanoribbons as a transistor channel material, " Nano Res., vol. 3, no. 1, pp. 8-15, Jan. 2010.
-
(2010)
Nano Res
, vol.3
, Issue.1
, pp. 8-15
-
-
Ouyang, Y.1
Dai, H.J.2
Guo, J.3
|