메뉴 건너뛰기




Volumn , Issue , 2012, Pages 715-725

Active learning with distributional estimates

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVE LEARNING; CONDITIONAL PROBABILITIES; DECISION BOUNDARY; ERROR REDUCTION; KERNEL DENSITY; LEARNING CURVES; MATHEMATICAL FRAMEWORKS; UNCERTAINTY SAMPLINGS;

EID: 84871757048     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1)

References (33)
  • 1
    • 77955659703 scopus 로고    scopus 로고
    • The true sample complexity of active learning
    • M. Balcan, S. Hanneke, and J.Wortman. The true sample complexity of active learning. Machine Learning, 80: 111-139, 2010.
    • (2010) Machine Learning , vol.80 , pp. 111-139
    • Balcan, M.1    Hanneke, S.2    Wortman, J.3
  • 3
    • 0025897859 scopus 로고
    • Neural net algorithms that learn in polynomial time from examples and queries
    • E. Baum. Neural net algorithms that learn in polynomial time from examples and queries. IEEE Transactions on Neural Networks, 2(1):5-19, 1991.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.1 , pp. 5-19
    • Baum, E.1
  • 4
    • 71149101362 scopus 로고    scopus 로고
    • Importance weighted active learning
    • A. Beygelzimer, S. Dasgupta, and J. Langford. Importance weighted active learning. In ICML, pages 49-56, 2009.
    • (2009) ICML , pp. 49-56
    • Beygelzimer, A.1    Dasgupta, S.2    Langford, J.3
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(1): 5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 7
    • 44649157037 scopus 로고    scopus 로고
    • CEDD: Color and edge directivity descriptor: A compact descriptor for image indexing and retrieval
    • S. Chatzichristofis and Y. Boutalis. CEDD: Color and Edge Directivity Descriptor: A Compact Descriptor for Image Indexing and Retrieval. Computer Vision Systems, pages 312-322, 2008.
    • (2008) Computer Vision Systems , pp. 312-322
    • Chatzichristofis, S.1    Boutalis, Y.2
  • 8
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Dem?sar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1-30, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 9
    • 0041940256 scopus 로고    scopus 로고
    • Object class recognition by unsupervised scale-invariant learning
    • R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale-invariant learning. In CVPR, volume 2, pages 264-271, 2003.
    • (2003) CVPR , vol.2 , pp. 264-271
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 10
    • 84885984394 scopus 로고    scopus 로고
    • A. Frank and A. Asuncion. UCI machine learning repository, 2010
    • A. Frank and A. Asuncion. UCI machine learning repository, 2010.URL http://archive.ics.uci.edu/ml.
  • 11
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1-loss, and the curseof-dimensionality
    • J. H. Friedman. On bias, variance, 0/1-loss, and the curseof- dimensionality. Data Mining and Knowledge Discovery, 1:55-77, 1997.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 55-77
    • Friedman, J.H.1
  • 12
    • 79551594780 scopus 로고    scopus 로고
    • Rates of convergence in active learning
    • S. Hanneke. Rates of convergence in active learning. Annals of Statistics, 39(1):333-361, 2011.
    • (2011) Annals of Statistics , vol.39 , Issue.1 , pp. 333-361
    • Hanneke, S.1
  • 14
    • 85162011798 scopus 로고    scopus 로고
    • Active learning by querying informative and representative examples
    • S.-J. Huang, R. Jin, and Z.-H. Zhou. Active learning by querying informative and representative examples. In NIPS, pages 892-900, 2010.
    • (2010) NIPS , pp. 892-900
    • Huang, S.-J.1    Jin, R.2    Zhou, Z.-H.3
  • 15
    • 0025721732 scopus 로고
    • Query-based learning applied to partially trained multilayer perceptrons
    • J. Hwang, J. Choi, S. Oh, R. Marks, et al. Query-based learning applied to partially trained multilayer perceptrons. IEEE Transactions on Neural Networks, 2(1): 131-136, 1991.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.1 , pp. 131-136
    • Hwang, J.1    Choi, J.2    Oh, S.3    Marks, R.4
  • 17
    • 50649102302 scopus 로고    scopus 로고
    • Active learning with gaussian processes for object categorization
    • A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell. Active learning with gaussian processes for object categorization. In ICCV, 2007.
    • (2007) ICCV
    • Kapoor, A.1    Grauman, K.2    Urtasun, R.3    Darrell, T.4
  • 18
    • 0025556967 scopus 로고
    • Handwritten zip code recognition with multilayer networks
    • Y. LeCun, O. Matan, B. Boser, J. S. Denker, et al. Handwritten zip code recognition with multilayer networks. In ICPR, volume II, pages 35-40, 1990.
    • (1990) ICPR , vol.2 , pp. 35-40
    • Lecun, Y.1    Matan, O.2    Boser, B.3    Denker, J.S.4
  • 20
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • D. J. MacKay. The evidence framework applied to classification networks. Neural Computation, 4:720-736, 1992.
    • (1992) Neural Computation , vol.4 , pp. 720-736
    • MacKay, D.J.1
  • 23
    • 0442319140 scopus 로고    scopus 로고
    • Toward optimal active learning through sampling estimation of error reduction
    • N. Roy and A. McCallum. Toward optimal active learning through sampling estimation of error reduction. In ICML, pages 441-448, 2001.
    • (2001) ICML , pp. 441-448
    • Roy, N.1    McCallum, A.2
  • 25
    • 34548168342 scopus 로고    scopus 로고
    • Active learning for logistic regression: An evaluation
    • A. Schein and L. Ungar. Active learning for logistic regression: an evaluation. Machine Learning, 68:235-265, 2007.
    • (2007) Machine Learning , vol.68 , pp. 235-265
    • Schein, A.1    Ungar, L.2
  • 27
    • 68949137209 scopus 로고    scopus 로고
    • Computer Sciences Technical Repor1648, University of Wisconsin-Madison
    • B. Settles. Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin-Madison, 2010.
    • (2010) Active Learning Literature Survey
    • Settles, B.1
  • 29
    • 77955986969 scopus 로고    scopus 로고
    • Beyond active noun tagging: Modeling contextual interactions for multi-class active learning
    • B. Siddiquie and A. Gupta. Beyond active noun tagging: Modeling contextual interactions for multi-class active learning. In CVPR, pages 2979-2986, 2010.
    • (2010) CVPR , pp. 2979-2986
    • Siddiquie, B.1    Gupta, A.2
  • 30
    • 31844439545 scopus 로고    scopus 로고
    • Compact approximations to bayesian predictive distributions
    • E. Snelson and Z. Ghahramani. Compact approximations to bayesian predictive distributions. In ICML, pages 840-847, 2005.
    • (2005) ICML , pp. 840-847
    • Snelson, E.1    Ghahramani, Z.2
  • 31
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong and D. Koller. Support vector machine active learning with applications to text classification. Journal of Machine Learning Research, 2:45-66, 2002.
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 32
    • 33750328441 scopus 로고    scopus 로고
    • Automatic dimensionality selection from the scree plot via the use of profile likelihood
    • M. Zhu and A. Ghodsi. Automatic dimensionality selection from the scree plot via the use of profile likelihood. Computational Statistics &Data Analysis, 51: 918-930, 2006.
    • (2006) Computational Statistics &Data Analysis , vol.51 , pp. 918-930
    • Zhu, M.1    Ghodsi, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.