메뉴 건너뛰기




Volumn 85, Issue 1, 2013, Pages 40-45

On the problem of slipper shapes of red blood cells in the microvasculature

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BLOOD FLOW VELOCITY; BLOOD FLOWMETRY; BLOOD VESSEL DIAMETER; BLOOD VISCOSITY; CELL SHAPE; CONTROLLED STUDY; ERYTHROCYTE STRUCTURE; MICROCIRCULATION; MICROVASCULATURE; PHASE TRANSITION; PRIORITY JOURNAL; QUANTITATIVE ANALYSIS; STRUCTURE ANALYSIS;

EID: 84871713568     PISSN: 00262862     EISSN: 10959319     Source Type: Journal    
DOI: 10.1016/j.mvr.2012.10.001     Document Type: Article
Times cited : (46)

References (20)
  • 2
    • 0030481623 scopus 로고    scopus 로고
    • Determination of red blood cell shape recovery time constant in a Couette system by the analysis of light reflectance and ektacytometry
    • Baskurt O., Meiselman H. Determination of red blood cell shape recovery time constant in a Couette system by the analysis of light reflectance and ektacytometry. Biorheology 1996, 33:489-503.
    • (1996) Biorheology , vol.33 , pp. 489-503
    • Baskurt, O.1    Meiselman, H.2
  • 3
    • 70349349184 scopus 로고    scopus 로고
    • ATP-dependent mechanics of red blood cells
    • Betz T., Lenz M., Joanny J.F., Sykes C. ATP-dependent mechanics of red blood cells. PNAS 2009, 106:15320-15325.
    • (2009) PNAS , vol.106 , pp. 15320-15325
    • Betz, T.1    Lenz, M.2    Joanny, J.F.3    Sykes, C.4
  • 4
    • 0014411259 scopus 로고
    • Rheological comparison of hemoglobin solutions and erythrocyte suspensions
    • Cokelet G., Meiselman H. Rheological comparison of hemoglobin solutions and erythrocyte suspensions. Science 1968, 162:275-277.
    • (1968) Science , vol.162 , pp. 275-277
    • Cokelet, G.1    Meiselman, H.2
  • 5
    • 0003715005 scopus 로고
    • Biomechanics: motion, flow, stress, and growth
    • Springer, New York
    • Fung Y. Biomechanics: motion, flow, stress, and growth. Biomechanics 1990, Springer, New York.
    • (1990) Biomechanics
    • Fung, Y.1
  • 6
    • 71849086982 scopus 로고    scopus 로고
    • Microconfined flow behavior of red blood cells in vitro
    • Guido S., Tomaiuolo G. Microconfined flow behavior of red blood cells in vitro. C.R. Phys. 2009, 10:751-763.
    • (2009) C.R. Phys. , vol.10 , pp. 751-763
    • Guido, S.1    Tomaiuolo, G.2
  • 7
    • 0014855896 scopus 로고
    • Capillary blood flow. I. Erythrocyte deformation in glass capillaries
    • Hochmuth R., et al. Capillary blood flow. I. Erythrocyte deformation in glass capillaries. Microvasc. Res. 1970, 2:409-419.
    • (1970) Microvasc. Res. , vol.2 , pp. 409-419
    • Hochmuth, R.1
  • 8
    • 38949096125 scopus 로고    scopus 로고
    • Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow
    • Kaoui B., Ristow G.H., Cantat I., Misbah C., Zimmermann W. Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow. Phys. Rev. E 2008, 77:021903.
    • (2008) Phys. Rev. E , vol.77 , pp. 021903
    • Kaoui, B.1    Ristow, G.H.2    Cantat, I.3    Misbah, C.4    Zimmermann, W.5
  • 9
    • 70350504152 scopus 로고    scopus 로고
    • Why do red blood cells have asymmetric shapes even in a symmetric flow?
    • Kaoui B., Biros G., Misbah C. Why do red blood cells have asymmetric shapes even in a symmetric flow?. Phys. Rev. Lett. 2009, 103:188101.
    • (2009) Phys. Rev. Lett. , vol.103 , pp. 188101
    • Kaoui, B.1    Biros, G.2    Misbah, C.3
  • 11
    • 84859339608 scopus 로고    scopus 로고
    • Vesicle tumbling inhibited by inertia
    • Laadhari A., Saramito P., Misbah C. Vesicle tumbling inhibited by inertia. Phys. Fluid 2012, 24:031901.
    • (2012) Phys. Fluid , vol.24 , pp. 031901
    • Laadhari, A.1    Saramito, P.2    Misbah, C.3
  • 12
    • 84871722328 scopus 로고
    • D.Sc. thesis, Ecole Polytechnique Paris, 1828.
    • Poiseuille, J.,1828. D.Sc. thesis, Ecole Polytechnique Paris, 1828.
    • (1828)
    • Poiseuille, J.1
  • 13
    • 0001425685 scopus 로고
    • Recherches sur les causes du mouvement du sang sur les veines
    • Poiseuille J. Recherches sur les causes du mouvement du sang sur les veines. J. Physiol. Exp. Pathol. 1830, 10:277-295.
    • (1830) J. Physiol. Exp. Pathol. , vol.10 , pp. 277-295
    • Poiseuille, J.1
  • 14
    • 17044419508 scopus 로고    scopus 로고
    • Numerical simulation of cell motion in tube flow
    • Pozrikidis C. Numerical simulation of cell motion in tube flow. Ann. Biomed. Eng. 2005, 33:165-178.
    • (2005) Ann. Biomed. Eng. , vol.33 , pp. 165-178
    • Pozrikidis, C.1
  • 15
    • 0019961357 scopus 로고
    • Two-dimensional model for capillary flow of an asymmetric cell
    • Secomb T.W., Skalak R. two-dimensional model for capillary flow of an asymmetric cell. Microvasc. Res. 1982, 24:194-203.
    • (1982) Microvasc. Res. , vol.24 , pp. 194-203
    • Secomb, T.W.1    Skalak, R.2
  • 16
    • 0014668756 scopus 로고
    • Deformation of red blood cells in capillaries
    • Skalak R., Branemark P.I. Deformation of red blood cells in capillaries. Science 1969, 164:717-719.
    • (1969) Science , vol.164 , pp. 717-719
    • Skalak, R.1    Branemark, P.I.2
  • 17
    • 33749132791 scopus 로고    scopus 로고
    • Mechanical response of human red blood cells in health and disease: some structure-property-function relationships
    • Suresh S. Mechanical response of human red blood cells in health and disease: some structure-property-function relationships. J. Mater. Res. 2006, 21:1871-1877.
    • (2006) J. Mater. Res. , vol.21 , pp. 1871-1877
    • Suresh, S.1
  • 18
    • 79957845551 scopus 로고    scopus 로고
    • Start-up shape dynamics of red blood cells in microcapillary flow
    • Tomaiuolo G., Guido S. Start-up shape dynamics of red blood cells in microcapillary flow. Microvasc. Res. 2011, 82:35-45.
    • (2011) Microvasc. Res. , vol.82 , pp. 35-45
    • Tomaiuolo, G.1    Guido, S.2
  • 20
    • 0018350757 scopus 로고
    • Thermoelasticity of red blood cell membranes
    • Waugh R.E., Evans E.A. Thermoelasticity of red blood cell membranes. Biophys. J. 1979, 26:115-131.
    • (1979) Biophys. J. , vol.26 , pp. 115-131
    • Waugh, R.E.1    Evans, E.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.