메뉴 건너뛰기




Volumn 18, Issue 1, 2013, Pages 41-48

Grasses provide new insights into regulation of shoot branching

Author keywords

[No Author keywords available]

Indexed keywords

GIBBERELLIC ACID; GIBBERELLIN; PHYTOHORMONE; VEGETABLE PROTEIN;

EID: 84871713490     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2012.07.001     Document Type: Review
Times cited : (113)

References (97)
  • 2
    • 0001458112 scopus 로고
    • Yield potential in a dwarf spring wheat and the effect of shading
    • Fischer R.A. Yield potential in a dwarf spring wheat and the effect of shading. Crop Sci. 1975, 15:607-613.
    • (1975) Crop Sci. , vol.15 , pp. 607-613
    • Fischer, R.A.1
  • 3
    • 84974220377 scopus 로고
    • Effects of manipulation of number of tillers and water supply on grain yield in barley
    • Jones H.G., Kirby E.J.M. Effects of manipulation of number of tillers and water supply on grain yield in barley. J. Agric. Sci. Camb. 1977, 88:391-397.
    • (1977) J. Agric. Sci. Camb. , vol.88 , pp. 391-397
    • Jones, H.G.1    Kirby, E.J.M.2
  • 4
    • 77952509586 scopus 로고    scopus 로고
    • Genetic and molecular bases of rice yield
    • Xing Y., Zhang Q. Genetic and molecular bases of rice yield. Ann. Rev. Plant Biol. 2010, 61:421-442.
    • (2010) Ann. Rev. Plant Biol. , vol.61 , pp. 421-442
    • Xing, Y.1    Zhang, Q.2
  • 5
    • 33845618112 scopus 로고    scopus 로고
    • The molecular genetics of crop domestication
    • Doebley J.F., et al. The molecular genetics of crop domestication. Cell 2006, 127:1309-1321.
    • (2006) Cell , vol.127 , pp. 1309-1321
    • Doebley, J.F.1
  • 6
    • 33645523199 scopus 로고    scopus 로고
    • Effect of genotype and environment on branching in weedy green millet (Setaria viridis) and domesticated foxtail millet (Setaria italica) (Poaceae)
    • Doust A.N., Kellogg E.A. Effect of genotype and environment on branching in weedy green millet (Setaria viridis) and domesticated foxtail millet (Setaria italica) (Poaceae). Mol. Ecol. 2006, 15:1335-1349.
    • (2006) Mol. Ecol. , vol.15 , pp. 1335-1349
    • Doust, A.N.1    Kellogg, E.A.2
  • 7
    • 84972218873 scopus 로고
    • A barley breeding program based on a ideotype
    • Donald C.M. A barley breeding program based on a ideotype. J. Agric. Sci. 1979, 93:261-269.
    • (1979) J. Agric. Sci. , vol.93 , pp. 261-269
    • Donald, C.M.1
  • 8
    • 0001165171 scopus 로고
    • Evidence for a 'uniculm effect' in spring wheat (Triticum aestivum L.) in a Mediterranean environment
    • Islam T.N.T., Sedgley R.H. Evidence for a 'uniculm effect' in spring wheat (Triticum aestivum L.) in a Mediterranean environment. Euphytica 1981, 30:277-282.
    • (1981) Euphytica , vol.30 , pp. 277-282
    • Islam, T.N.T.1    Sedgley, R.H.2
  • 10
    • 74549121922 scopus 로고    scopus 로고
    • New genes in the strigolactone-related shoot branching pathway
    • Beveridge C.A., Kyozuka J. New genes in the strigolactone-related shoot branching pathway. Curr. Opin. Plant Biol. 2010, 3:34-39.
    • (2010) Curr. Opin. Plant Biol. , vol.3 , pp. 34-39
    • Beveridge, C.A.1    Kyozuka, J.2
  • 11
    • 0030893329 scopus 로고    scopus 로고
    • The evolution of apical dominance in maize
    • Doebley J., et al. The evolution of apical dominance in maize. Nature 1997, 386:485-488.
    • (1997) Nature , vol.386 , pp. 485-488
    • Doebley, J.1
  • 12
    • 33646915741 scopus 로고    scopus 로고
    • Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals
    • Kebrom T.H., et al. Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol. 2006, 140:1109-1117.
    • (2006) Plant Physiol. , vol.140 , pp. 1109-1117
    • Kebrom, T.H.1
  • 13
    • 78049389286 scopus 로고    scopus 로고
    • The genetics of barley low-tillering mutants: low number of tillers-1 (lnt1)
    • Dabbert T., et al. The genetics of barley low-tillering mutants: low number of tillers-1 (lnt1). Theor. Appl. Genet. 2010, 121:705-715.
    • (2010) Theor. Appl. Genet. , vol.121 , pp. 705-715
    • Dabbert, T.1
  • 14
    • 80051958470 scopus 로고    scopus 로고
    • Grassy tillers1 promotes apical dominance in maize and responds to shade signals in the grasses
    • Whipple C.J., et al. grassy tillers1 promotes apical dominance in maize and responds to shade signals in the grasses. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:E506-E512.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108
    • Whipple, C.J.1
  • 15
    • 79251629807 scopus 로고    scopus 로고
    • INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1
    • Ramsay L., et al. INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat. Genet. 2011, 43:169-173.
    • (2011) Nat. Genet. , vol.43 , pp. 169-173
    • Ramsay, L.1
  • 16
    • 84865858952 scopus 로고    scopus 로고
    • Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development
    • Kebrom T.H., et al. Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. Plant Physiol. 2012, 160:308-318.
    • (2012) Plant Physiol. , vol.160 , pp. 308-318
    • Kebrom, T.H.1
  • 17
    • 33846038255 scopus 로고    scopus 로고
    • Grass architecture: genetic and environmental control of branching
    • Doust A.N. Grass architecture: genetic and environmental control of branching. Curr. Opin. Plant Biol. 2007, 10:21-25.
    • (2007) Curr. Opin. Plant Biol. , vol.10 , pp. 21-25
    • Doust, A.N.1
  • 18
    • 0242499850 scopus 로고    scopus 로고
    • Control of tillering in rice
    • Li X., et al. Control of tillering in rice. Nature 2003, 422:618-621.
    • (2003) Nature , vol.422 , pp. 618-621
    • Li, X.1
  • 19
    • 0037154153 scopus 로고    scopus 로고
    • The tomato Blind gene encodes a MYB transcription factor that controls the formation of lateral meristems
    • Schmitz G., et al. The tomato Blind gene encodes a MYB transcription factor that controls the formation of lateral meristems. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:1064-1069.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 1064-1069
    • Schmitz, G.1
  • 20
    • 0002479826 scopus 로고
    • Newly bred gigas form of bread wheat (Triticum aestivum L) - morphological features and thermo-photoperiodic responses
    • Atsmon D., Jacobs E. Newly bred gigas form of bread wheat (Triticum aestivum L) - morphological features and thermo-photoperiodic responses. Crop Sci. 1977, 17:31-35.
    • (1977) Crop Sci. , vol.17 , pp. 31-35
    • Atsmon, D.1    Jacobs, E.2
  • 21
    • 77952821615 scopus 로고    scopus 로고
    • Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice
    • Jiao Y.Q., et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 2010, 42:541-544.
    • (2010) Nat. Genet. , vol.42 , pp. 541-544
    • Jiao, Y.Q.1
  • 22
    • 77952885074 scopus 로고    scopus 로고
    • OsSPL14 promotes panicle branching and higher grain productivity in rice
    • Miura K., et al. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 2010, 42:545-549.
    • (2010) Nat. Genet. , vol.42 , pp. 545-549
    • Miura, K.1
  • 23
    • 33751088804 scopus 로고    scopus 로고
    • Apical dominance and shoot branching. Divergent opinions or divergent mechanisms?
    • Beveridge C.A., et al. Apical dominance and shoot branching. Divergent opinions or divergent mechanisms?. Plant Physiol. 2006, 142:812-819.
    • (2006) Plant Physiol. , vol.142 , pp. 812-819
    • Beveridge, C.A.1
  • 24
    • 70350639334 scopus 로고    scopus 로고
    • Pea has its tendrils in branching discoveries spanning a century from auxin to strigolactones
    • Beveridge C.A., et al. Pea has its tendrils in branching discoveries spanning a century from auxin to strigolactones. Plant Physiol. 2009, 151:985-990.
    • (2009) Plant Physiol. , vol.151 , pp. 985-990
    • Beveridge, C.A.1
  • 25
    • 79953041816 scopus 로고    scopus 로고
    • Signal integration in the control of shoot branching
    • Domagalska M.A., Leyser O. Signal integration in the control of shoot branching. Nat. Rev. Mol. Cell Biol. 2011, 12:211-221.
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 211-221
    • Domagalska, M.A.1    Leyser, O.2
  • 26
    • 79956103635 scopus 로고    scopus 로고
    • Auxin, cytokinin and the control of shoot branching
    • Muller D., Leyser O. Auxin, cytokinin and the control of shoot branching. Ann. Bot. 2011, 107:1203-1212.
    • (2011) Ann. Bot. , vol.107 , pp. 1203-1212
    • Muller, D.1    Leyser, O.2
  • 27
    • 0000758919 scopus 로고
    • Studies on the growth hormone of plants III The inhibiting action of the growth substance on bud development
    • Thimann K.V., Skoog F. Studies on the growth hormone of plants III The inhibiting action of the growth substance on bud development. Proc. Natl. Acad. Sci. U.S.A. 1933, 19:714-716.
    • (1933) Proc. Natl. Acad. Sci. U.S.A. , vol.19 , pp. 714-716
    • Thimann, K.V.1    Skoog, F.2
  • 28
    • 27244448167 scopus 로고    scopus 로고
    • Auxin dynamics after decapitation are not correlated with the initial growth of axillary buds
    • Morris S.E., et al. Auxin dynamics after decapitation are not correlated with the initial growth of axillary buds. Plant Physiol. 2005, 138:1665-1672.
    • (2005) Plant Physiol. , vol.138 , pp. 1665-1672
    • Morris, S.E.1
  • 29
    • 65249107137 scopus 로고    scopus 로고
    • Roles for auxin, cytokinin, and strigolactone in regulating shoot branching
    • Ferguson B., Beveridge C.A. Roles for auxin, cytokinin, and strigolactone in regulating shoot branching. Plant Physiol. 2009, 149:1929-1944.
    • (2009) Plant Physiol. , vol.149 , pp. 1929-1944
    • Ferguson, B.1    Beveridge, C.A.2
  • 30
    • 77956866109 scopus 로고
    • The control of patterned differentiation of vascular tissues
    • Sachs T. The control of patterned differentiation of vascular tissues. Adv. Bot. Res. 1981, 9:151-162.
    • (1981) Adv. Bot. Res. , vol.9 , pp. 151-162
    • Sachs, T.1
  • 31
    • 70350462743 scopus 로고    scopus 로고
    • Control of bud activation by an auxin transport switch
    • Prusinkiewicz P., et al. Control of bud activation by an auxin transport switch. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:17431-17436.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 17431-17436
    • Prusinkiewicz, P.1
  • 32
    • 0002934828 scopus 로고
    • The antagonism of auxin and kinetin in apical dominance
    • Wickson M., Thimann K.V. The antagonism of auxin and kinetin in apical dominance. Physiol. Plant. 1958, 11:62-74.
    • (1958) Physiol. Plant. , vol.11 , pp. 62-74
    • Wickson, M.1    Thimann, K.V.2
  • 33
    • 0001536115 scopus 로고
    • Changes after decapitation in concentrations of indole-3-acetic-acid and abscisic-acid in the larger axillary bud of Phaseolus vulgaris L. cv Tender Green
    • Gocal G.F.W., et al. Changes after decapitation in concentrations of indole-3-acetic-acid and abscisic-acid in the larger axillary bud of Phaseolus vulgaris L. cv Tender Green. Plant Physiol. 1991, 95:344-350.
    • (1991) Plant Physiol. , vol.95 , pp. 344-350
    • Gocal, G.F.W.1
  • 34
    • 0038093719 scopus 로고
    • The control of tillering in grasses by auxin
    • Leopold A.C. The control of tillering in grasses by auxin. Am. J. Bot. 1949, 36:437-440.
    • (1949) Am. J. Bot. , vol.36 , pp. 437-440
    • Leopold, A.C.1
  • 35
    • 0003553334 scopus 로고
    • Manipulation of apical dominance in sorghum with growth-regulators
    • Isbell V.R., Morgan P.W. Manipulation of apical dominance in sorghum with growth-regulators. Crop Sci. 1982, 22:30-35.
    • (1982) Crop Sci. , vol.22 , pp. 30-35
    • Isbell, V.R.1    Morgan, P.W.2
  • 36
    • 34548502219 scopus 로고    scopus 로고
    • DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice
    • Arite T., et al. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J. 2007, 51:1019-1029.
    • (2007) Plant J. , vol.51 , pp. 1019-1029
    • Arite, T.1
  • 37
    • 0034045769 scopus 로고    scopus 로고
    • Auxin inhibition of decapitation-induced branching is dependent on graft-transmissible signals regulated by genes Rms1 and Rms2
    • Beveridge C.A., et al. Auxin inhibition of decapitation-induced branching is dependent on graft-transmissible signals regulated by genes Rms1 and Rms2. Plant Physiol. 2000, 123:689-697.
    • (2000) Plant Physiol. , vol.123 , pp. 689-697
    • Beveridge, C.A.1
  • 38
    • 0031400788 scopus 로고    scopus 로고
    • The rms1 mutant of pea has elevated indole-3-acetic acid levels and reduced root-sap zeatin riboside content but increased branching controlled by graft-transmissible signal(s)
    • Beveridge C.A., et al. The rms1 mutant of pea has elevated indole-3-acetic acid levels and reduced root-sap zeatin riboside content but increased branching controlled by graft-transmissible signal(s). Plant Physiol. 1997, 115:1251-1258.
    • (1997) Plant Physiol. , vol.115 , pp. 1251-1258
    • Beveridge, C.A.1
  • 39
    • 0002947439 scopus 로고    scopus 로고
    • Highly branched phenotype of the petunia dad1-1 mutant is reversed by grafting
    • Napoli C. Highly branched phenotype of the petunia dad1-1 mutant is reversed by grafting. Plant Physiol. 1996, 111:27-37.
    • (1996) Plant Physiol. , vol.111 , pp. 27-37
    • Napoli, C.1
  • 40
    • 0038722744 scopus 로고    scopus 로고
    • MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea
    • Sorefan K., et al. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev. 2003, 17:1469-1474.
    • (2003) Genes Dev. , vol.17 , pp. 1469-1474
    • Sorefan, K.1
  • 41
    • 0036336159 scopus 로고    scopus 로고
    • MAX1 and MAX2 control shoot lateral branching in Arabidopsis
    • Stirnberg P., et al. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 2002, 129:1131-1141.
    • (2002) Development , vol.129 , pp. 1131-1141
    • Stirnberg, P.1
  • 42
    • 3342920134 scopus 로고    scopus 로고
    • MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule
    • Booker J., et al. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr. Biol. 2004, 14:1232-1238.
    • (2004) Curr. Biol. , vol.14 , pp. 1232-1238
    • Booker, J.1
  • 43
    • 20044371180 scopus 로고    scopus 로고
    • MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone
    • Booker J., et al. MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev. Cell 2005, 8:443-449.
    • (2005) Dev. Cell , vol.8 , pp. 443-449
    • Booker, J.1
  • 44
    • 14644409769 scopus 로고    scopus 로고
    • Suppression of tiller bud activity in tillering dwarf mutants of rice
    • Ishikawa S., et al. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol. 2005, 46:79-86.
    • (2005) Plant Cell Physiol. , vol.46 , pp. 79-86
    • Ishikawa, S.1
  • 45
    • 33751007029 scopus 로고    scopus 로고
    • The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds
    • Zou J.H., et al. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J. 2006, 48:687-696.
    • (2006) Plant J. , vol.48 , pp. 687-696
    • Zou, J.H.1
  • 46
    • 51649096075 scopus 로고    scopus 로고
    • Strigolactone inhibition of shoot branching
    • Gomez-Roldan V., et al. Strigolactone inhibition of shoot branching. Nature 2008, 455:189-194.
    • (2008) Nature , vol.455 , pp. 189-194
    • Gomez-Roldan, V.1
  • 47
    • 51649112342 scopus 로고    scopus 로고
    • Inhibition of shoot branching by new terpenoid plant hormones
    • Umehara M., et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature 2008, 455:195-200.
    • (2008) Nature , vol.455 , pp. 195-200
    • Umehara, M.1
  • 48
    • 0001231931 scopus 로고
    • Germination stimulants 2. The structure of strigol - a potent seed germination stimulant for witchweed (Striga lutea Tour.)
    • Cook C.E., et al. Germination stimulants 2. The structure of strigol - a potent seed germination stimulant for witchweed (Striga lutea Tour.). J. Am. Chem. Soc. 1972, 94:6198-6199.
    • (1972) J. Am. Chem. Soc. , vol.94 , pp. 6198-6199
    • Cook, C.E.1
  • 49
    • 20444471142 scopus 로고    scopus 로고
    • Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi
    • Aikyama K., et al. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 2005, 435:824-827.
    • (2005) Nature , vol.435 , pp. 824-827
    • Aikyama, K.1
  • 50
    • 67651115565 scopus 로고    scopus 로고
    • DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth
    • Lin H., et al. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 2009, 21:1512-1525.
    • (2009) Plant Cell , vol.21 , pp. 1512-1525
    • Lin, H.1
  • 51
    • 68949130180 scopus 로고    scopus 로고
    • D14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers
    • Arite T., et al. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol. 2009, 50:1416-1424.
    • (2009) Plant Cell Physiol. , vol.50 , pp. 1416-1424
    • Arite, T.1
  • 52
    • 69149104126 scopus 로고    scopus 로고
    • Dwarf 88, a novel putative esterase gene affecting architecture of rice plant
    • Gao Z., et al. Dwarf 88, a novel putative esterase gene affecting architecture of rice plant. Plant Mol. Biol. 2009, 71:265-271.
    • (2009) Plant Mol. Biol. , vol.71 , pp. 265-271
    • Gao, Z.1
  • 53
    • 69249209640 scopus 로고    scopus 로고
    • Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice
    • Liu W., et al. Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta 2009, 230:649-658.
    • (2009) Planta , vol.230 , pp. 649-658
    • Liu, W.1
  • 54
    • 66149099230 scopus 로고    scopus 로고
    • Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis
    • Brewer P.B., et al. Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol. 2009, 150:482-493.
    • (2009) Plant Physiol. , vol.150 , pp. 482-493
    • Brewer, P.B.1
  • 55
    • 70349223008 scopus 로고    scopus 로고
    • Interactions between auxin and strigolactone in shoot branching control
    • Hayward A., et al. Interactions between auxin and strigolactone in shoot branching control. Plant Physiol. 2009, 151:400-412.
    • (2009) Plant Physiol. , vol.151 , pp. 400-412
    • Hayward, A.1
  • 56
    • 77956210642 scopus 로고    scopus 로고
    • Strigolactones enhance competition between shoot branches by dampening auxin transport
    • Crawford S., et al. Strigolactones enhance competition between shoot branches by dampening auxin transport. Development 2010, 137:2905-2913.
    • (2010) Development , vol.137 , pp. 2905-2913
    • Crawford, S.1
  • 57
    • 33645011772 scopus 로고    scopus 로고
    • The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport
    • Bennett T., et al. The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr. Biol. 2006, 16:553-563.
    • (2006) Curr. Biol. , vol.16 , pp. 553-563
    • Bennett, T.1
  • 58
    • 73449098946 scopus 로고    scopus 로고
    • TCP genes: a family snapshot ten years later
    • Martin-Trillo M., Cubas P. TCP genes: a family snapshot ten years later. Trends Plant Sci. 2010, 15:31-39.
    • (2010) Trends Plant Sci. , vol.15 , pp. 31-39
    • Martin-Trillo, M.1    Cubas, P.2
  • 59
    • 0037324657 scopus 로고    scopus 로고
    • The OsTB1 gene negatively regulates lateral branching in rice
    • Takada T., et al. The OsTB1 gene negatively regulates lateral branching in rice. Plant J. 2003, 33:513-520.
    • (2003) Plant J. , vol.33 , pp. 513-520
    • Takada, T.1
  • 60
    • 34250621278 scopus 로고    scopus 로고
    • Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds
    • Aguilar-Martinez J.A., et al. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 2007, 19:458-472.
    • (2007) Plant Cell , vol.19 , pp. 458-472
    • Aguilar-Martinez, J.A.1
  • 61
    • 80051668118 scopus 로고    scopus 로고
    • Role of tomato BRANCHED1-like genes in the control of shoot branching
    • Martin-Trillo M., et al. Role of tomato BRANCHED1-like genes in the control of shoot branching. Plant J. 2011, 67:701-714.
    • (2011) Plant J. , vol.67 , pp. 701-714
    • Martin-Trillo, M.1
  • 62
    • 84855268692 scopus 로고    scopus 로고
    • The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching
    • Braun N., et al. The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiol. 2012, 158:225-238.
    • (2012) Plant Physiol. , vol.158 , pp. 225-238
    • Braun, N.1
  • 63
    • 33646368697 scopus 로고    scopus 로고
    • A distant upstream enhancer at the maize domestication gene tb0005 has pleiotropic effects on plant and inflorescent architecture
    • Clark R.M., et al. A distant upstream enhancer at the maize domestication gene tb0005 has pleiotropic effects on plant and inflorescent architecture. Nat. Genet. 2006, 38:594-597.
    • (2006) Nat. Genet. , vol.38 , pp. 594-597
    • Clark, R.M.1
  • 64
    • 80054968887 scopus 로고    scopus 로고
    • Identification of a functional transposon insertion in the maize domestication gene tb1
    • Studer A., et al. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet. 2011, 43:1160-1163.
    • (2011) Nat. Genet. , vol.43 , pp. 1160-1163
    • Studer, A.1
  • 65
    • 0033383531 scopus 로고    scopus 로고
    • Epistatic and environmental interactions for quantitative trait loci involved in maize evolution
    • Lukens L.N., Doebley J. Epistatic and environmental interactions for quantitative trait loci involved in maize evolution. Genet. Res. 1999, 74:291-302.
    • (1999) Genet. Res. , vol.74 , pp. 291-302
    • Lukens, L.N.1    Doebley, J.2
  • 66
    • 0028847505 scopus 로고
    • Physiological and ecological function within the phytochrome family
    • Smith H. Physiological and ecological function within the phytochrome family. Annu. Rev. Plant Phys. 1995, 46:289-315.
    • (1995) Annu. Rev. Plant Phys. , vol.46 , pp. 289-315
    • Smith, H.1
  • 67
    • 0025204902 scopus 로고
    • Far-red radiation reflected from adjacent leaves - an early signal of competition in plant canopies
    • Ballare C.L., et al. Far-red radiation reflected from adjacent leaves - an early signal of competition in plant canopies. Science 1990, 247:329-332.
    • (1990) Science , vol.247 , pp. 329-332
    • Ballare, C.L.1
  • 68
    • 77950529151 scopus 로고    scopus 로고
    • Phytochrome regulation of branching in Arabidopsis
    • Finlayson S.A., et al. Phytochrome regulation of branching in Arabidopsis. Plant Physiol. 2010, 152:1914-1927.
    • (2010) Plant Physiol. , vol.152 , pp. 1914-1927
    • Finlayson, S.A.1
  • 69
    • 80053621880 scopus 로고    scopus 로고
    • Photosynthetic photon flux density and phytochrome B interact to regulate branching in Arabidopsis
    • Su H., et al. Photosynthetic photon flux density and phytochrome B interact to regulate branching in Arabidopsis. Plant Cell Environ. 2011, 34:1986-1998.
    • (2011) Plant Cell Environ. , vol.34 , pp. 1986-1998
    • Su, H.1
  • 70
    • 77955001633 scopus 로고    scopus 로고
    • FINE CLUM1(FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice
    • Minakuchi K., et al. FINE CLUM1(FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol. 2010, 51:1127-1135.
    • (2010) Plant Cell Physiol. , vol.51 , pp. 1127-1135
    • Minakuchi, K.1
  • 71
    • 84855293873 scopus 로고    scopus 로고
    • Antagonistic action of strigolactone and cytokinin in bud outgrowth control
    • Dun E.A., et al. Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol. 2012, 158:487-498.
    • (2012) Plant Physiol. , vol.158 , pp. 487-498
    • Dun, E.A.1
  • 72
    • 72049120953 scopus 로고    scopus 로고
    • Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways
    • Kebrom T.H., et al. Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways. Plant Cell Environ. 2010, 33:48-58.
    • (2010) Plant Cell Environ. , vol.33 , pp. 48-58
    • Kebrom, T.H.1
  • 73
    • 33748769519 scopus 로고    scopus 로고
    • Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice
    • Xie K.B., et al. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol. 2006, 142:280-293.
    • (2006) Plant Physiol. , vol.142 , pp. 280-293
    • Xie, K.B.1
  • 74
    • 0037162702 scopus 로고    scopus 로고
    • Prediction of plant microRNA targets
    • Rhoades M.W., et al. Prediction of plant microRNA targets. Cell 2002, 110:513-520.
    • (2002) Cell , vol.110 , pp. 513-520
    • Rhoades, M.W.1
  • 75
    • 34047174556 scopus 로고    scopus 로고
    • The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA
    • Chuck G., et al. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat. Genet. 2007, 39:544-549.
    • (2007) Nat. Genet. , vol.39 , pp. 544-549
    • Chuck, G.1
  • 76
    • 42149177744 scopus 로고    scopus 로고
    • The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis
    • Schwarz S., et al. The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol. Biol. 2008, 67:183-195.
    • (2008) Plant Mol. Biol. , vol.67 , pp. 183-195
    • Schwarz, S.1
  • 77
    • 80054819864 scopus 로고    scopus 로고
    • Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass
    • Chuck G.S., et al. Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:17550-17555.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 17550-17555
    • Chuck, G.S.1
  • 78
    • 68949161539 scopus 로고    scopus 로고
    • Small RNAs and developmental timing in plants
    • Poethig R.S. Small RNAs and developmental timing in plants. Curr. Opin. Genet. Dev. 2009, 19:374-378.
    • (2009) Curr. Opin. Genet. Dev. , vol.19 , pp. 374-378
    • Poethig, R.S.1
  • 79
    • 84862800354 scopus 로고    scopus 로고
    • Overexpression of miRNA156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production
    • Fu C., et al. Overexpression of miRNA156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechol. J. 2012, 10:443-452.
    • (2012) Plant Biotechol. J. , vol.10 , pp. 443-452
    • Fu, C.1
  • 80
    • 0035099993 scopus 로고    scopus 로고
    • Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice
    • Sakamoto T., et al. Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol. 2001, 125:1508-1516.
    • (2001) Plant Physiol. , vol.125 , pp. 1508-1516
    • Sakamoto, T.1
  • 81
    • 70349251262 scopus 로고    scopus 로고
    • The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1
    • Bolduc N., Hake S. The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1. Plant Cell 2009, 21:1647-1658.
    • (2009) Plant Cell , vol.21 , pp. 1647-1658
    • Bolduc, N.1    Hake, S.2
  • 82
    • 44949108257 scopus 로고    scopus 로고
    • Gibberellin metabolism and its regulation
    • Yamaguchi S. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 2008, 59:225-251.
    • (2008) Annu. Rev. Plant Biol. , vol.59 , pp. 225-251
    • Yamaguchi, S.1
  • 83
    • 57749085570 scopus 로고    scopus 로고
    • A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice
    • Lo S.F., et al. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 2008, 20:2603-2618.
    • (2008) Plant Cell , vol.20 , pp. 2603-2618
    • Lo, S.F.1
  • 84
    • 0036914545 scopus 로고    scopus 로고
    • Auxin regulation of the gibberellin pathway in pea
    • O'Neill D.P., Ross J.J. Auxin regulation of the gibberellin pathway in pea. Plant Physiol. 2002, 130:1974-1982.
    • (2002) Plant Physiol. , vol.130 , pp. 1974-1982
    • O'Neill, D.P.1    Ross, J.J.2
  • 85
    • 80052272295 scopus 로고    scopus 로고
    • Proper gibberellin localization in vascular tissue is required to control auxin-dependent leaf development and bud outgrowth in hybrid aspen
    • Mauriat M., et al. Proper gibberellin localization in vascular tissue is required to control auxin-dependent leaf development and bud outgrowth in hybrid aspen. Plant J. 2011, 67:805-816.
    • (2011) Plant J. , vol.67 , pp. 805-816
    • Mauriat, M.1
  • 86
    • 33845890550 scopus 로고    scopus 로고
    • Identification and mapping of a tiller inhibition gene (tin3) in wheat
    • Kurapathy V., et al. Identification and mapping of a tiller inhibition gene (tin3) in wheat. Theor. Appl. Genet. 2007, 114:285-294.
    • (2007) Theor. Appl. Genet. , vol.114 , pp. 285-294
    • Kurapathy, V.1
  • 87
    • 84971094181 scopus 로고
    • A tiller inhibitor gene in wheat and its effect on plant-growth
    • Richards R.A. A tiller inhibitor gene in wheat and its effect on plant-growth. Aust. J. Agric. Res. 1988, 39:749-757.
    • (1988) Aust. J. Agric. Res. , vol.39 , pp. 749-757
    • Richards, R.A.1
  • 88
    • 0001951660 scopus 로고    scopus 로고
    • Phenology, development, and growth of the wheat (Triticum aestivum L) shoot apex: a review
    • McMaster G.S. Phenology, development, and growth of the wheat (Triticum aestivum L) shoot apex: a review. Adv. Agron. 1997, 59:63-118.
    • (1997) Adv. Agron. , vol.59 , pp. 63-118
    • McMaster, G.S.1
  • 89
    • 0038176500 scopus 로고    scopus 로고
    • Genetic and morphological characterization of the barley uniculm2 (cul2) mutant
    • Babb S., Muehlbauer G.J. Genetic and morphological characterization of the barley uniculm2 (cul2) mutant. Theor. Appl. Genet. 2003, 106:846-857.
    • (2003) Theor. Appl. Genet. , vol.106 , pp. 846-857
    • Babb, S.1    Muehlbauer, G.J.2
  • 90
    • 67349213346 scopus 로고    scopus 로고
    • The genetics of barley low-tillering mutants: absent lower laterals (als)
    • Dabbert T., et al. The genetics of barley low-tillering mutants: absent lower laterals (als). Theor. Appl. Genet. 2009, 118:1351-1360.
    • (2009) Theor. Appl. Genet. , vol.118 , pp. 1351-1360
    • Dabbert, T.1
  • 91
    • 77956567811 scopus 로고    scopus 로고
    • KNOX genes: versatile regulators of plant development and diversity
    • Hay A., Tsiantis M. KNOX genes: versatile regulators of plant development and diversity. Development 2010, 137:3153-3165.
    • (2010) Development , vol.137 , pp. 3153-3165
    • Hay, A.1    Tsiantis, M.2
  • 92
    • 17644402132 scopus 로고    scopus 로고
    • Agronomic evaluation of a tiller inhibition gene (tin) in wheat I. Effect on yield, yield components, and grain protein
    • Duggan B.L., et al. Agronomic evaluation of a tiller inhibition gene (tin) in wheat I. Effect on yield, yield components, and grain protein. Aust. J. Agric. Sci. 2005, 56:169-178.
    • (2005) Aust. J. Agric. Sci. , vol.56 , pp. 169-178
    • Duggan, B.L.1
  • 93
    • 84859926007 scopus 로고    scopus 로고
    • Evaluation of a reduced-tillering (tin) gene in wheat lines grown across different production environments
    • Mitchell J.H., et al. Evaluation of a reduced-tillering (tin) gene in wheat lines grown across different production environments. Crop Pasture Sci. 2012, 63:148-161.
    • (2012) Crop Pasture Sci. , vol.63 , pp. 148-161
    • Mitchell, J.H.1
  • 94
    • 0030045035 scopus 로고    scopus 로고
    • Branching in pea (actions of genes Rms3 and Rms4)
    • Beveridge C.A., et al. Branching in pea (actions of genes Rms3 and Rms4). Plant Physiol. 1996, 110:859-865.
    • (1996) Plant Physiol. , vol.110 , pp. 859-865
    • Beveridge, C.A.1
  • 95
    • 14644409769 scopus 로고    scopus 로고
    • Suppression of tiller activity in tillering dwarf mutants of rice
    • Ishikawa S., et al. Suppression of tiller activity in tillering dwarf mutants of rice. Plant Cell Physiol. 2005, 46:79-85.
    • (2005) Plant Cell Physiol. , vol.46 , pp. 79-85
    • Ishikawa, S.1
  • 96
    • 33745163228 scopus 로고    scopus 로고
    • Phylogenetic analysis of the "ECE" (CYC_TB1) clade reveals duplications predating the core eudicots
    • Howarth D.G., Donoghue M.J. Phylogenetic analysis of the "ECE" (CYC_TB1) clade reveals duplications predating the core eudicots. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:9101-9106.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 9101-9106
    • Howarth, D.G.1    Donoghue, M.J.2
  • 97
    • 34548445150 scopus 로고    scopus 로고
    • Arabidopsis Teosinte Branched1-like regulates axillary bud outgrowth and is homologous to monocot Teosinte Branched 1
    • Finlayson S.A. Arabidopsis Teosinte Branched1-like regulates axillary bud outgrowth and is homologous to monocot Teosinte Branched 1. Plant Cell Physiol. 2007, 48:667-677.
    • (2007) Plant Cell Physiol. , vol.48 , pp. 667-677
    • Finlayson, S.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.