메뉴 건너뛰기




Volumn 75, Issue 1, 2013, Pages 23-36

A Canonical Correlation Approach for Selecting the Number of Dynamic Factors

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84871566979     PISSN: 03059049     EISSN: 14680084     Source Type: Journal    
DOI: 10.1111/obes.12003     Document Type: Article
Times cited : (27)

References (30)
  • 1
    • 33846041971 scopus 로고    scopus 로고
    • 'Consistent estimation of the number of dynamic factors in a large N and T panel'
    • Amengual, D. and Watson, M. (2007). 'Consistent estimation of the number of dynamic factors in a large N and T panel', Journal of Business and Economic Statistics, Vol. 25, pp. 91-96.
    • (2007) Journal of Business and Economic Statistics , vol.25 , pp. 91-96
    • Amengual, D.1    Watson, M.2
  • 3
    • 84871616445 scopus 로고    scopus 로고
    • Diffusion Index-based Inflation Forecasts for the Euro Area, ECB Working Paper 61.
    • Angelini, E., Henry, J. and Mestre, R. (2001). Diffusion Index-based Inflation Forecasts for the Euro Area, ECB Working Paper 61.
    • (2001)
    • Angelini, E.1    Henry, J.2    Mestre, R.3
  • 5
    • 0037277111 scopus 로고    scopus 로고
    • 'Inferential theory for factor models of large dimensions'
    • Bai, J. (2003). 'Inferential theory for factor models of large dimensions', Econometrica, Vol. 71, pp. 135-172.
    • (2003) Econometrica , vol.71 , pp. 135-172
    • Bai, J.1
  • 6
    • 0036221554 scopus 로고    scopus 로고
    • 'Determining the number of factors in approximate factor models'
    • Bai, J. and Ng, S. (2002). 'Determining the number of factors in approximate factor models', Econometrica, Vol. 70, pp. 191-221.
    • (2002) Econometrica , vol.70 , pp. 191-221
    • Bai, J.1    Ng, S.2
  • 7
    • 33846119127 scopus 로고    scopus 로고
    • Determining the number of primitive shocks in factor models
    • Bai, J. and Ng, S. (2007). 'Determining the number of primitive shocks in factor models', Journal of Business and Economic Statistics, Vol. 25, pp. 52-60.
    • (2007) Journal of Business and Economic Statistics , vol.25 , pp. 52-60
    • Bai, J.1    Ng, S.2
  • 8
    • 84871615606 scopus 로고    scopus 로고
    • Forecasting with Factor-augmented Error Correction Models, CEPR Discussion Paper 7677.
    • Banerjee, A., Marcellino, M. and Masten, I. (2010). Forecasting with Factor-augmented Error Correction Models, CEPR Discussion Paper 7677.
    • (2010)
    • Banerjee, A.1    Marcellino, M.2    Masten, I.3
  • 10
    • 0344083569 scopus 로고    scopus 로고
    • Forecasting some low-predictability time series using Diffusion indices
    • Brisson, M., Campbell, B. and Galbraith, J. (2003). 'Forecasting some low-predictability time series using Diffusion indices', Journal of Forecasting, Vol. 22, pp. 515-531.
    • (2003) Journal of Forecasting , vol.22 , pp. 515-531
    • Brisson, M.1    Campbell, B.2    Galbraith, J.3
  • 11
    • 33846643606 scopus 로고    scopus 로고
    • Forecasting inflation using economic indicators: the case of France
    • Bruneau, C., Bandt, O. D., Flageollet, A. and Michaux, E. (2007). 'Forecasting inflation using economic indicators: the case of France', Journal of Forecasting, Vol. 26, pp. 1-22.
    • (2007) Journal of Forecasting , vol.26 , pp. 1-22
    • Bruneau, C.1    Bandt, O.D.2    Flageollet, A.3    Michaux, E.4
  • 12
    • 42549091104 scopus 로고    scopus 로고
    • How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach
    • Eickmeier, S. and Ziegler, C. (2008). 'How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach', Journal of Forecasting, Vol. 27, pp. 237-265.
    • (2008) Journal of Forecasting , vol.27 , pp. 237-265
    • Eickmeier, S.1    Ziegler, C.2
  • 13
    • 23844558620 scopus 로고    scopus 로고
    • Principal components at work: the empirical analysis of monetary policy with large data sets
    • Favero, C., Marcellino, M. and Neglia, F. (2005). Principal components at work: the empirical analysis of monetary policy with large data sets', Journal of Applied Econometrics, Vol. 20, pp. 603-620.
    • (2005) Journal of Applied Econometrics , vol.20 , pp. 603-620
    • Favero, C.1    Marcellino, M.2    Neglia, F.3
  • 14
    • 74149090687 scopus 로고    scopus 로고
    • Opening the black box: structural factor models versus structural VARs
    • Forni, M., Gianonne, D., Lippi, M. and Reichlin, L. (2009). 'Opening the black box: structural factor models versus structural VARs', Econometric Theory, Vol. 25, pp. 1319-1347.
    • (2009) Econometric Theory , vol.25 , pp. 1319-1347
    • Forni, M.1    Gianonne, D.2    Lippi, M.3    Reichlin, L.4
  • 16
    • 0035634831 scopus 로고    scopus 로고
    • The generalized factor model: representation theory
    • Forni, M. and Lippi, M. (2001). 'The generalized factor model: representation theory', Econometric Theory, Vol. 17, pp. 1113-1141.
    • (2001) Econometric Theory , vol.17 , pp. 1113-1141
    • Forni, M.1    Lippi, M.2
  • 17
    • 0001600765 scopus 로고    scopus 로고
    • Lets get real: a factor-analytical approach to disaggregated business cycle dynamics
    • Forni, M. and Reichlin, L. (1998). 'Lets get real: a factor-analytical approach to disaggregated business cycle dynamics', Review of Economic Studies, Vol. 65, pp. 453-473.
    • (1998) Review of Economic Studies , vol.65 , pp. 453-473
    • Forni, M.1    Reichlin, L.2
  • 18
    • 33646477830 scopus 로고    scopus 로고
    • VARs, factor models and the empirical validation of equilibrium business cycle models
    • Giannone, D., Reichlin, L. and Sala, L. (2006). 'VARs, factor models and the empirical validation of equilibrium business cycle models', Journal of Econometrics, Vol. 132, pp. 257-279.
    • (2006) Journal of Econometrics , vol.132 , pp. 257-279
    • Giannone, D.1    Reichlin, L.2    Sala, L.3
  • 19
    • 34250778808 scopus 로고    scopus 로고
    • Determining the number of dynamic factors in the general dynamic factor model
    • Hallin, M. and Liska, R. (2007). 'Determining the number of dynamic factors in the general dynamic factor model', Journal of the American Statistical Association, Vol. 102, pp. 603-617.
    • (2007) Journal of the American Statistical Association , vol.102 , pp. 603-617
    • Hallin, M.1    Liska, R.2
  • 20
    • 45849132077 scopus 로고    scopus 로고
    • Determining the number of factors and lag order in dynamic factor models: a minimum entropy approach
    • Jacobs, J. and Otter, P. (2008). 'Determining the number of factors and lag order in dynamic factor models: a minimum entropy approach', Econometric Reviews, Vol. 27, pp. 398-427.
    • (2008) Econometric Reviews , vol.27 , pp. 398-427
    • Jacobs, J.1    Otter, P.2
  • 21
    • 62549140553 scopus 로고    scopus 로고
    • A parametric estimation method for dynamic factor models of large dimensions
    • Marcellino, M. and Kapetanios, G. (2009). 'A parametric estimation method for dynamic factor models of large dimensions', Journal of Time Series Analysis, Vol. 30, pp. 208-238.
    • (2009) Journal of Time Series Analysis , vol.30 , pp. 208-238
    • Marcellino, M.1    Kapetanios, G.2
  • 22
    • 0037307624 scopus 로고    scopus 로고
    • Macroeconomic forecasting in the Euro area: country specific versus area-wide information
    • Marcellino, M., Stock, J., and Watson, M. (2003). 'Macroeconomic forecasting in the Euro area: country specific versus area-wide information', European Economic Review, Vol. 47, pp. 1-18.
    • (2003) European Economic Review , vol.47 , pp. 1-18
    • Marcellino, M.1    Stock, J.2    Watson, M.3
  • 23
    • 70349835782 scopus 로고    scopus 로고
    • Testing hypotheses about the number of factors in large factor models
    • Onatski, A. (2009). 'Testing hypotheses about the number of factors in large factor models', Econometrica, Vol. 77, pp. 1447-1479.
    • (2009) Econometrica , vol.77 , pp. 1447-1479
    • Onatski, A.1
  • 24
    • 78650967353 scopus 로고    scopus 로고
    • Determining the number of factors from empirical distribution of eigenvalues
    • Onatski, A. (2010). 'Determining the number of factors from empirical distribution of eigenvalues', Review of Economics and Statistics, Vol. 92, pp. 1004-1016.
    • (2010) Review of Economics and Statistics , vol.92 , pp. 1004-1016
    • Onatski, A.1
  • 25
    • 84871621016 scopus 로고    scopus 로고
    • Forecasting Dutch GDP Using Large Scale Factor Models, DNB Working Paper 028.
    • den Reijer, A. (2005). Forecasting Dutch GDP Using Large Scale Factor Models, DNB Working Paper 028.
    • (2005)
    • den Reijer, A.1
  • 26
    • 34547509116 scopus 로고    scopus 로고
    • Forecasting German GDP using alternative factor models based on large datasets
    • Schumacher, C. (2007). 'Forecasting German GDP using alternative factor models based on large datasets', Journal of Forecasting, Vol. 26, pp. 271-302.
    • (2007) Journal of Forecasting , vol.26 , pp. 271-302
    • Schumacher, C.1
  • 28
    • 0036970448 scopus 로고    scopus 로고
    • Forecasting using principal components from a large number of predictors
    • Stock, J. and Watson, M. (2002a). 'Forecasting using principal components from a large number of predictors', Journal of the American Statistical Association, Vol. 97, pp. 1167-79.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 1167-1179
    • Stock, J.1    Watson, M.2
  • 30
    • 84871612182 scopus 로고    scopus 로고
    • Implications of Dynamic Factor Models for VAR Analysis, NBER Working Paper 11467.
    • Stock, J. and Watson, M. (2005). Implications of Dynamic Factor Models for VAR Analysis, NBER Working Paper 11467.
    • (2005)
    • Stock, J.1    Watson, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.