메뉴 건너뛰기




Volumn 50, Issue 6, 2012, Pages 2986-3015

Properties of discrete delta functions and local convergence of the immersed boundary method

Author keywords

Discrete delta function; Immersed boundary method; Moment order; Smoothing order

Indexed keywords

CONSTANT COEFFICIENTS; CONVERGENCE PROPERTIES; DIFFERENTIAL OPERATORS; DISCRETIZATIONS; ELLIPTIC PROBLEM; FINITE-DIFFERENCE DISCRETIZATION; IMMERSED BOUNDARY METHODS; INTERNAL INTERFACES; LOCAL CONVERGENCE; MOMENT ORDER; NUMERICAL APPROXIMATIONS; REGULAR GRIDS; SINGULAR SOURCES; SMOOTHING ORDER;

EID: 84871538754     PISSN: 00361429     EISSN: None     Source Type: Journal    
DOI: 10.1137/110836699     Document Type: Article
Times cited : (53)

References (25)
  • 2
    • 35848933716 scopus 로고    scopus 로고
    • On the accuracy of finite difference methods for elliptic problems with interfaces
    • J. Beale and A. Layton, On the accuracy of finite difference methods for elliptic problems with interfaces, Commun. Appl. Math. Comput. Sci., 1 (2006), pp. 91-119
    • (2006) Commun. Appl. Math. Comput. Sci. , vol.1
    • Beale, J.1    Layton, A.2
  • 3
    • 0000103294 scopus 로고
    • A computational model of the cochlea using the immersed boundary method
    • R.P. Beyer, A computational model of the cochlea using the immersed boundary method, J. Comput. Phys., 98 (1992), pp. 145-162
    • (1992) J. Comput. Phys. , vol.98 , pp. 145-162
    • Beyer, R.P.1
  • 5
    • 42649127705 scopus 로고    scopus 로고
    • Validation of a simple method for representing spheres and slender bodies in an immersed boundary method for Stokes flow on an unbounded domain
    • T. Bringley and C. Peskin, Validation of a simple method for representing spheres and slender bodies in an immersed boundary method for Stokes flow on an unbounded domain, J. Comput. Phys., 227 (2008), pp. 5397-5425
    • (2008) J. Comput. Phys. , vol.227 , pp. 5397-5425
    • Bringley, T.1    Peskin, C.2
  • 6
    • 0036347671 scopus 로고    scopus 로고
    • The method of regularized stokeslets
    • R. Cortez, The method of regularized stokeslets, SIAM J. Sci. Comput., 23 (2002), pp. 1204- 1225
    • (2002) SIAM.J. Sci. Comput. , vol.23 , pp. 1204-1225
    • Cortez, R.1
  • 7
    • 15844383109 scopus 로고    scopus 로고
    • The method of regularized stokeslets in three dimensions: Analysis, validation, and application to helical swimming
    • R. Cortez, L. Fauci, and A. Medovikov, The method of regularized stokeslets in three dimensions: Analysis, validation, and application to helical swimming, Phys. Fluids, 17 (2005), p. 031504
    • (2005) Phys. Fluids , vol.17 , pp. 031504
    • Cortez, R.1    Fauci, L.2    Medovikov, A.3
  • 8
    • 18344388470 scopus 로고    scopus 로고
    • Discretization of dirac delta functions in level set methods
    • B. Engquist, A. Tornberg, and R. Tsai, Discretization of dirac delta functions in level set methods, J. Comput. Phys., 207 (2005), pp. 28-51
    • (2005) J. Comput. Phys. , vol.207 , pp. 28-51
    • Engquist, B.1    Tornberg, A.2    Tsai, R.3
  • 10
    • 19044361846 scopus 로고    scopus 로고
    • On the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficiently smooth problems
    • B.E. Griffith and C.S. Peskin, On the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficiently smooth problems, J. Comput. Phys., 208 (2005), pp. 75-105
    • (2005) J. Comput. Phys. , vol.208 , pp. 75-105
    • Griffith, B.E.1    Peskin, C.S.2
  • 12
    • 0000868581 scopus 로고    scopus 로고
    • An immersed boundary method with formal second order accuracy and reduce numerical viscosity
    • M. Lai and C.S. Peskin, An immersed boundary method with formal second order accuracy and reduce numerical viscosity, J. Comput. Phys., 160 (2000), pp. 705-719
    • (2000) J. Comput. Phys. , vol.160 , pp. 705-719
    • Lai, M.1    Peskin, C.S.2
  • 13
    • 38049013847 scopus 로고    scopus 로고
    • The Immersed Interface Method: Numerical solutions of pdes involving interfaces and irrgular domains
    • Z. Li and K. Ito, The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irrgular Domains, SIAM, Philadelphia, 2006
    • (2006) SIAM. Philadelphia
    • Li, Z.1    Ito, K.2
  • 15
    • 52349091971 scopus 로고    scopus 로고
    • Convergence proof of the velocity field for a Stokes flow immersed boundary method
    • Y. Mori, Convergence proof of the velocity field for a Stokes flow immersed boundary method, Comm. Pure Appl. Math., 61 (2008), pp. 1213-1263
    • (2008) Comm. Pure Appl. Math. , vol.61 , pp. 1213-1263
    • Mori, Y.1
  • 17
    • 33751544551 scopus 로고    scopus 로고
    • The immersed boundary method
    • C. Peskin, The immersed boundary method, Acta Numer., 11 (2002), pp. 479-517
    • (2002) Acta Numer. , vol.11 , pp. 479-517
    • Peskin, C.1
  • 18
    • 0017424014 scopus 로고
    • Numerical analysis of blood flow in the heart
    • C.S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys., 25 (1977), pp. 220-252
    • (1977) J. Comput. Phys. , vol.25 , pp. 220-252
    • Peskin, C.S.1
  • 22
    • 7244250225 scopus 로고    scopus 로고
    • Numerical approximations of singular source terms in differential equations
    • A. Tornberg and B. Engquist, Numerical approximations of singular source terms in differential equations, J. Comput. Phys., 200 (2004), pp. 462-488
    • (2004) J. Comput. Phys. , vol.200 , pp. 462-488
    • Tornberg, A.1    Engquist, B.2
  • 24
    • 0039523559 scopus 로고    scopus 로고
    • On the approximation of singular source terms in differential equations
    • J. Walden, On the approximation of singular source terms in differential equations, Numer. Methods Partial Differential Equations, 15 (1999), pp. 503-520
    • (1999) Numer. Methods Partial Differential Equations , vol.15 , pp. 503-520
    • Walden, J.1
  • 25
    • 0036001757 scopus 로고    scopus 로고
    • Numerical integration of periodic functions: A few examples
    • J. Weideman, Numerical integration of periodic functions: A few examples, Amer. Math. Monthly, 109 (2002), pp. 21-36
    • (2002) Amer. Math. Monthly , vol.109 , pp. 21-36
    • Weideman, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.